

# **SHELTER DESIGNS - MOZAMBIQUE**



CATALOGUE OF THE DIFFERENT SHELTER SOLUTIONS IMPLEMENTED BY SHELTER CLUSTER PARTNERS IN MOZAMBIQUE

# SHELTER DESIGNS

**Mozambique Shelter Cluster** 

www.sheltercluster.org





The multiple needs of affected families in terms of safety, privacy, protection and livelihood must be assisted through approaches that are appropriate to the specific context and the availability of resources.

Humanitarian actors use a range of methods to provide support to affected people. These methods include the provision of basic materials for shelter construction, technical support, cash assistance, sensitization and promotion of safe shelter construction and installation of shelter practices, or a combination of these and other approaches involving construction.

The aim of shelter assistance programmes is to support affected families and their communities in their pathway to recovery towards safe, adequate, and appropriate shelter, prioritizing the most vulnerable and looking to ensure participation. Basic services and dignified living condition are integral part of safe and adequate shelter.





**Emergency shelter** can be defined as the short term/temporary shelter that provides **lifesaving support**, the most basic shelter support that can be provided before, during or **immediately after a disaster/conflict** (Humanitarian Shelter Guidelines, Version 2, 2018).

**Type of sites:** Temporary sites, relocation sites, newly displaced families and newly returning families.

# **Summary of key criteria:**

| ID            | 4,5                 | 6                      | 7             | 9             | 10a          | 10b          | 12            | 15            |
|---------------|---------------------|------------------------|---------------|---------------|--------------|--------------|---------------|---------------|
|               |                     |                        |               |               |              |              |               |               |
| Life span     | 3 to 6 months       | 3 to 6 months          | 3 to 6 months | 3 to 6 months | 1 to 2 years | 1 to 2 years | 3 to 6 months | 1 to 3 months |
| Setup time    | 3 to 5 days         | 1 to 2 days            | 1 to 2 days   | 1 to 2 days   | 5 to 15 days | 5 to 15 days | 1 to 2 days   | 1 to 2 days   |
| Area          | 15 sqm              | 10.36 sqm              | 8 sqm         | 9 sqm         | 18           |              | 8 sqm         | 22 sqm        |
| Habitability  | 3m pp for 5 persons | 3.4 m per person for 3 | 2.6 m for 3   | 3             |              |              | 4 m pp        | 4.8 m2 pp     |
| Material cost | 300                 | 77                     | 90            | 52            | 360          | 660          | 43.3          | 139           |
| Labor Cost    | 50                  | N/A                    | 10            | 10            | 62           | 76           | 5             | 24            |















# Province(s):

Cabo Delgado, Nampula, Manica, Sofala

#### District(s):

Metuge, Ancuabe, Chiure, Ibo, Quissanga, Corrane, Buzi, Dondo, Marromeu, etc.

#### Context/Trigger of response

- ☑ Conflict
- ☑ Cyclone

#### Setting

- ☑ Rural
- □ Urban

# **Shelter category**

- ☐ Transitional Shelter☐ Permanent House

#### Type of site

- ☑ Temporary site
- ☑ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

The construction of emergency shelters follows a community-led ensuring approach, active participation from both the IDP and host communities, as well as local authorities. Local artisans, including both women and men, are trained in Build Back Safer (BBS) construction techniques and receive continuous guidance throughout the building process to ensure proper application of these methods. Depending on the shelter's design, materials are either sourced locally or brought into the community, including items like nails fixtures, tools, etc., all in adherence to strict environmental procedures.

#### **Community Engagement/ Participation**

The beneficiaries participate in all the construction process which foster a sense of ownership and responsibility, leading to better maintenance and longevity of the shelters.

#### **Environmental Consideration**

When using local materials, we minimize the environmental impact associated with transportation and supports sustainable resource management.

Local materials and techniques can be adapted to suit specific environmental conditions, making the shelters more resilient to local weather patterns and natural hazards. Nonetheless, overharvesting local materials, such as wood and bamboo, can lead to environmental degradation and depletion of natural resources.

# Cultural Practices (Sustainability)

The emergency shelters built with familiar materials and techniques are more likely to be culturally accepted and integrated into the community's way of life.

#### **Other Information**

We encourage the participation of women in all construction activities and provide equal training for both men and women on Build Back Safer techniques adapted to the construction of Emergency provide PSEA, shelters and which is mandatory а requirement program for involvement.























| Province(s | ) |
|------------|---|
| Nampula    |   |

District(s): Meconta District

#### Context/Trigger of response

☑ Conflict ☐ Cyclone

☐ Floods

# Setting

☑ Rural ☐ Urban

#### **Shelter category**

☑ Emergency Shelter ☐ Transitional Shelter

☐ Permanent Shelter

# Type of site

☐ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

☐ 1-3 months

☑ 3-6 months

☐ 1-2 years

☐ 2-5 years

☐ 1-2 days

Shelter set-up time

□ >5 days

□ >15 days

#### **Materials**

Roofing: Bamboo, tarpaulin, grass Walls: Bamboo and local woods.

arass

Floors: soil

#### DRR/Resilience techniques used

Use of bamboo as sustainable material and creation of channels along and between the shelter to facilitate water drainage during rainy

season, thus avoid flooding

# **Advantages**

- ☐ Utilizing readily available local materials such as bamboo, local woods, and grass enables quicker construction and faster and cheaper provision of shelters in emergency situations.
- ☐ Shelters built with familiar materials and techniques are more likely to be culturally accepted and integrated into the community

# Challenges/Disadvantages

- ☐ Limited space, lack of privacy (no internal divisions)
- ☐ Local materials such as bamboo, wood, and grass are not as durable, requiring more frequent repairs or replacements. When not treated, local materials may be more vulnerable to weather conditions, pests, and rot, which can compromise the integrity of the shelters.

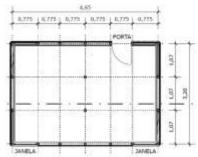
# Workforce required for set up

x skilled x unskilled

#### Shelter area 15 sqm (m<sup>2</sup>)

**Shelter dimensions** 6m X 2.5m

#### **Shelter habitability**


3 m per person suitable for up to 5 occupants

#### **Shelter estimated cost**

Material cost: USD 300 Labour cost: USD 50



















# Average Shelter life span

Nampula, Ibo, Quissanga

Mefunvo, Kisiwi, etc

☐ 1-3 months ☑ 3-6 months ☐ 1-2 years

Province(s):

District(s):

☐ 2-5 years

# Shelter set-up time

- □ 1-2 days
- □ >5 days
- □ >15 days

# Context/Trigger of response

- ☑ Conflict
- ☐ Cyclone ☐ Floods
- Setting
- ☑ Rural ☐ Urban

# **Shelter category**

- ☑ Emergency Shelter ☐ Transitional Shelter
- □ Permanent Shelter

# Type of site

- ☐ Temporary site
- ☑ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☐ Return/origin location

# **TECHNICAL DESCRIPTION**

Corrane, Matemo, Quirimba, Quirambo,

#### **Materials**

- Roofing: Bamboo, tarpaulin, grass Walls: Bamboo and local woods.
- arass Floors: soil

#### DRR/Resilience techniques used

The bamboo and local wood poles are arranged in a cross-bracing pattern to enhance the structural integrity and prevent the shelter from swaying or collapsing

#### **Advantages**

- ☐ Utilizing readily available local materials such as bamboo, local woods, and grass enables quicker construction and faster and cheaper provision of shelters in emergency situations.
- ☐ Shelters built with familiar materials and techniques are more likely to be culturally accepted and integrated into the community

#### Challenges/Disadvantages

☐ Local materials such as bamboo, wood, and grass are not as durable, requiring more frequent repairs or replacements. When not treated, local materials may be more vulnerable to weather conditions, pests, and rot, which can compromise the integrity of the shelters.

# Workforce required for set up

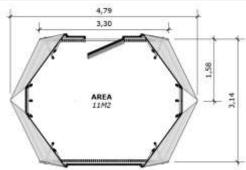
x skilled x unskilled

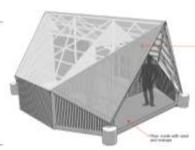
Shelter area

**Shelter dimensions** 

15 sqm (m<sup>2</sup>) 6m X 2.5m **Shelter habitability** 

3 m per person suitable for up to 5 occupants


#### **Shelter estimated cost**


Material cost: USD 300 Labour cost: USD 50











Province(s): Cabo Delgado

District(s): Ibo district

Context/Trigger of response

☑ Conflict ☐ Cyclone

☐ Floods

Setting

☑ Rural

☐ Urban

Type of site

☑ Temporary site

**Shelter category** 

☑ Emergency Shelter

□ Transitional Shelter

☐ Permanent Shelter

☐ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location





☐ 1-3 months

☑ 3-6 months

☐ 1-2 years

☐ 2-5 years

# **Materials**

Roofing: Tarpaulin 4x6m, bamboo

Walls: bamboo, local stakes

Floors: sand



☐ 3-5 days

□ >5 days

□ >15 days

# DRR/Resilience techniques used

The structure design and layout is resilient against strong winds, providing reliable protection.

#### **Advantages**

☐ Quick and efficient construction allows for rapid deployment in emergencies.

☐ The shelter design is well-accepted by the local community, who can actively participate in the building process, fostering community engagement.

☐ Cost-effective, making it an affordable solution for emergency housing.

# Challenges/Disadvantages

☐ Limited size restricts occupancy, accommodating only up to three people per shelter, which may not be sufficient for larger families.

☐ While construction is quick, the shelters may offer only temporary solutions and require frequent maintenance or upgrades.



1 skilled 2 unskilled

Shelter area **Shelter dimensions**  $10.36 \text{ sgm } (\text{m}^2)$ 

3.3m X 3.14m

#### Shelter habitability

3.4m per person suitable for 3 occupants

#### **Shelter estimated cost**

Material cost: USD 77 USD 3500 MZN\*

Labour cost: N/A

















| Province(s): |
|--------------|
| Cabo Delgado |

District(s): Metuge

#### Context/Trigger of response

☑ Conflict ☐ Cyclone ☐ Floods

# Setting

☑ Rural ☐ Urban

# **Shelter category**

☑ Emergency Shelter ☐ Transitional Shelter ☐ Permanent Shelter

# Type of site

☑ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas ☐ Return/origin location

#### TECHNICAL DESCRIPTION

#### Average Shelter life span

☐ 1-3 months ☑ 3-6 months

☐ 1-2 years

☐ 2-5 years

#### **Materials**

Roofing: Bamboo, tarpaulin Walls: Bamboo, nylon rope

Floors: Local mud

# **Advantages**

☐ Fast assembly, low cost

☐ Easy transport of many shelters

☐ Better dimensions for temporary sites

# Shelter set-up time

☑ 1-2 days

☐ 3-5 days

□ >15 days

□ >5 days

# DRR/Resilience techniques used

Use of bamboo as sustainable material and creation of channels along and between the shelter to facilitate water drainage during rainy season, thus avoid flooding

#### Challenges/Disadvantages

☐ Limited space, lack of privacy

☐ Safety and protection concerns (no doors and windows)

☐ No elevation from the ground

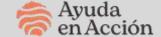
#### Workforce required for set up

1 skilled 3 unskilled

Shelter area 8 sqm (m<sup>2</sup>)

**Shelter dimensions** 

4m X 2m


Shelter habitability

2.6 m per person suitable for 3 occupants

#### **Shelter estimated cost**

Material cost: USD 90 Labour cost: USD 10









| Province(s): |
|--------------|
| Cabo Delgado |

**District(s)**: Chiure, Meculane

# Context/Trigger of response

☐ Conflict X ☐ Cyclone

☐ Floods

# Setting

☐ Rural X☐ Urban

#### **Shelter category**

☐ Emergency Shelter X☐ Transitional Shelter

☐ Permanent Shelter

#### Type of site

☐ Temporary site

☐ Relocation site, Resettlement sites X

☐ Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Materials, training, labor provided.

#### **Community Engagement/ Participation**

The community is involved from the consultation process and presentation of the project. They are trained in shelter construction and protection and participate in the construction by providing labor. The construction system is appropriate and accepted by the community.

#### **Environmental Consideration**

authorities.

Local materials without chemicals, community involvement in the construction and long term maintenance ensures its sustainability. 80% of materials from the forest (bamboo and poles), but these materials have been harvested following regulations established by national

#### **Cultural Practices (Sustainability)**

The construction system is used in the region, and the communities are familiar with it, ensuring that the methods are suitable and well-accepted. This approach involves women in the building process of their own shelters and employs local labor. Training in resilient construction techniques was carried out, along with awareness sessions on risks and maintenance.

#### **Other Information**

This solution was used as a phased approach in order to allocate families in their plots, while they could start the construction of their transitional shelter. However, as this solution covers main shelter needs, community was not encouraged to build t-shelters quickly. Strong mobilization required







# **EMEREGENCY SHELTER/TRANSIT**





| TECHNICAL DESCRIPTION  Average Shelter life span Mat | erials |
|------------------------------------------------------|--------|
| Chiure, Meculane (Resettlement sit                   | e)     |
| Province(s): Cabo Delgado  District(s):              |        |
| Puncing a (a)                                        |        |

| Context/Trigger of response  ☐ Conflict X  ☐ Cyclone ☐ Floods |
|---------------------------------------------------------------|
| Setting<br>□ Rural X<br>□ Urban                               |

| Coordin                                          |                                                     | nating Humanitarian Shelter and Settleme                                                             |
|--------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|
| response                                         |                                                     | Shelter category  ☐ Emergency Shelter X  ☐ Transitional Shelter  ☐ Permanent Shelter                 |
|                                                  |                                                     | Type of site  ☐ Temporary site ☐ Relocation site, Resettlement sites X                               |
|                                                  |                                                     | <ul><li>☐ Host areas/affected areas</li><li>☐ Return/origin location</li></ul>                       |
| <ul><li>□ Co</li><li>□ Eo</li><li>□ Qo</li></ul> | conomic.<br>uickly as                               | on time is very short.<br>sembled by low skilled people.<br>extended                                 |
| ☐ Ar                                             | rea of cor<br>ormal fan<br>equires to<br>ot easy to | Disadvantages verage is good for 3 family members, when hily size is 5. reatment of bamboo. Dupgrade |
| $\square$ No                                     | o elevatio                                          | on from the around                                                                                   |





#### ☐ 1-3 months Roofing: Tarpaulins, bamboo, tire cords and galvanized wires,

- ☐ 3-6 months X (up to 1Y)
- ☐ 1-2 years
- ☐ 2-5 years

# Shelter set-up time

- ☐ 1-2 days X
- ☐ 3-5 days
- □ >5 days □ >15 days

# Floors: Soil

galvanized wires,

# **DRR/Resilience techniques used**

Walls: Bamboo, tire cords and

Local carpernters trained in repair and maintance techniques as this is emergency situation with short period of life spam.

# Challenges/I

- ☐ Area of co normal fan
- ☐ Requires t
- ☐ Not easy to
- □ No elevation
- ☐ Protection concerns as there are no internal divisions

and no doors.

# Workforce required for set up

1 skilled 1 unskilled

# Shelter area

**Shelter dimensions** 3.0 X 3.0 X 2.5m 9.0 (m<sup>2</sup>)

#### **Shelter habitability**

3 Family members (when family size is 5)

#### **Shelter estimated cost**

Material cost: USD 52 \* Labour cost: USD 10











Province(s): Cabo Delgado

**District(s)**: Mueda **Context/Trigger of response** 

✓ Conflict☐ Cyclone

□ Floods

Setting

☑ Rural☑ Urban

**Shelter category** 

☐ Emergency Shelter☑ Transitional Shelter

□ Permanent House

Type of site

□ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

☐ 1-3 months

☐ 3-6 months

☑ 1-2 years

☐ 2-5 years

# Shelter set-up time

Workforce required

1 skilled 3 unskilled

☐ 1-2 days

☐ 3-5 days

☑ >5 days

for set up

□ >15 days

# Materials

Local wooden poles, bamboo poles, mud daub wall for the superstructure, plastic tarpaulin and grass fixed on local wooden truss roof.

#### Shelter area

**Type 1** - 18sqm (6mx3m) for small households with 5 and below family members.

**Type 2** – 30sqm (5mx6m) for household size above.

Hipped roof is the design of shelters in Lyanda IDP site, Mueda district. Proposed by the partner Solidairités International (SI) in 2022.

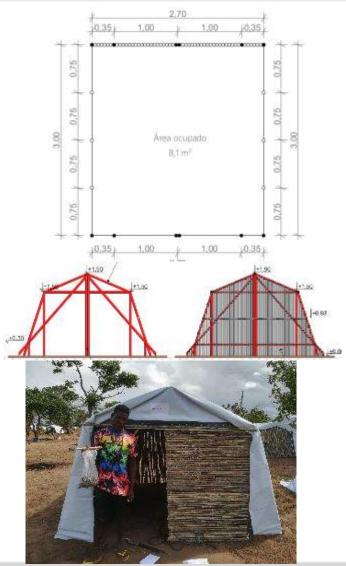
# **Advantages**

- ☐ Short-term solution, ensuring durability and stability of the housing structure.
- □ Provision of dignified shelter, contributing to safety, security, health, and well-being, and promotion to recovery among affected households.
- ☐ Remove the need of water for the *matope* process.
- ☐ Reduce the number of bamboos in the construction.

### **Challenges/Disadvantages**

☐ Requires more advanced construction skills and materials.

Type 1 Type 2
Total cost: 506\$ Total cost: 828\$


Material cost: 360.44\$ M Labour cost: 62.18\$ Labour cost: 62.18\$

Material cost: 663.45\$ Labour cost: 76.03\$









Province(s):

Cabo Delgado

District(s):

Ancuabe - Natove

# Context/Trigger of response

☑ Conflict

☐ Cyclone ☐ Floods

Setting

☑ Rural

□ Urban

# **Shelter category**

☑ Emergency Shelter☐ Transitional Shelter

☐ Permanent Shelter

# Type of site

☐ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

# Methodology

Training of local committee in type A shelter construction, supply of material (tarpaulin, shelter toolkit, bamboos, nail and recycled rubber rope) and construction support (team of 4 per shelter).

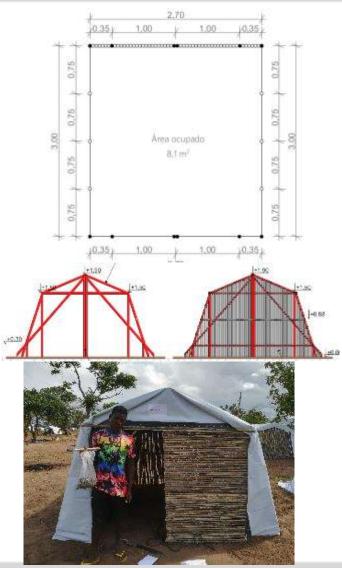
# Community Engagement/ Participation

After construction, women/men can line bamboo walls with mud to strengthen shelter and provide a strong barrier

# Cultural Practices (Sustainability)

The families make the entrance doors out of bamboos and the back and front are covered with earth.

#### **Environmental Consideration**


Promotion of use of bamboo as sustainable material, but the design durability is limited by the lifespan of the tarp and bamboo is treated with anti termite solution.

#### **Other Information**

| <br> | <br> |
|------|------|
|      |      |







| Province(s): |  |
|--------------|--|
| Cabo Delgado |  |

### District(s): Ancuabe - Natove

# Context/Trigger of response ☑ Conflict

☐ Cyclone ☐ Floods

| Setting |
|---------|
| Jetting |
| ☐ Rural |

☐ Urban

# **Shelter category**

☑ Emergency Shelter ☐ Transitional Shelter ☐ Permanent Shelter

# Type of site

☐ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas ☐ Return/origin location

#### TECHNICAL DESCRIPTION

# Average Shelter life span

☐ 1-3 months ☑ 3-6 months

☐ 1-2 years

☐ 2-5 years

#### **Materials**

Roofing and Walls: Bamboo, 3.5" common nails", recycled rubber cord "corda de pneu", shelter toolkit and tarpaulin.

Floors: Sand

# **Advantages**

☑ Lifespan of tarp ☑ Lack of privacy

☑ Reduced space

#### Shelter set-up time

☑ 1-2 days

☐ 3-5 days

□ >5 days

□ >15 days

#### **DRR/Resilience techniques used**

Promotion of use of bamboo as sustainable material, but the design durability is limited by the lifespan of the tarp and bamboo is treated with

anti termite solution

# Challenges/Disadvantages

☑ Quick construction, just a few materials what allows to transport materials for a high number of shelters in the same truck

✓ Low cost

☑ Goods dimensions for temporary centers

☑ On sunny days, indoors and extremely hot

### Workforce required for set up

0 skilled 4 unskilled

#### Shelter area

8 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

3.0 m X 2.70 m

#### Shelter habitability

4 m per person suitable for 2 occupants

#### **Shelter estimated cost**

Material cost: USD 43.39\* Labour cost: USD 4.74



# TRANSIT SHELTER/CENTRE









# Province(s):

Cabo Delgado

#### District(s):

Mueda

#### PROJECT DESCRIPTION

#### Methodology

The semi-permanent communal hanger internally partitioned used to serve as a transit center for new arrivals following attacks in the neighboring villages of Mueda District. There are total of 6 blocks in Lianda site with a full capacity of 96HHs/ 480 individuals. In 2022, UNHCR and partner SI (Solidarités International) constructed two (2) transit shelters and NRC constructed four (4) transit shelters in Lianda site. The materials used for the construction are bamboo wall, corrugated galvanized iron sheets, plastic sheets partition and concrete floor.

#### **Average Shelter life span**

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 2-5 years

#### Shelter set-up time

- ☐ 1-2 days
- ☐ 3-5 days
- □ >5 days

#### **Total cost:**

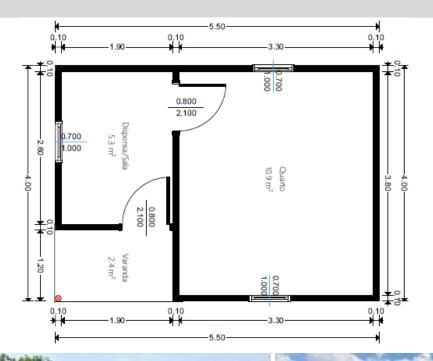
13,000\$ - 16,000\$

# Shelter category Context/Trigger of response

- ☑ Emergency Shelter
- ☐ Transitional Shelter
- ☐ Permanent Shelter

# Type of site

- ☐ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☐ Return/origin location


#### Overall challenges and Environmental Consideration

- Protection issues: reach broader audience, which does not allow for precise targeting of specific households (as Gender, vulnerability criteria).
- Space limitations and privacy concerns.
- Environmental impact from harvesting natural materials
- Inconsistency in the quality of the wooden poles.









Province(s): Cabo Delgado

**District(s)**: Ancuabe - Natove

#### **Context/Trigger of response**

☑ Conflict

☐ Cyclone ☐ Floods

# Setting

☑ Rural
☐ Urban

### **Shelter category**

☑ Emergency Shelter☐ Transitional Shelter

☐ Permanent Shelter

### Type of site

☐ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### **PROJECT DESCRIPTION**

#### Methodology

Construction materials will be made available to families and the local shelter committee will be trained to build the shelter and construction will be carried out by a team of more than 5 people.

The families in turn will tidy up the walls and create flooring to protect rainwater.

The committee group was made up of a mixed group of men and women. The shelter toolkit is given to allow beneficiary to source own raw materials for future repairs.

Grass can be added to the cover and allow the Tarpaulin's to last longer and reduce heating. Windows included which allow for great air circulation.

### Community Engagement/ Participation

Inspired by local construction and made in a model similar to traditional pau-a-pique structures. Beneficiary is able to adapt and improve as needed, offers privacy.

# **Cultural Practices** (Sustainability)

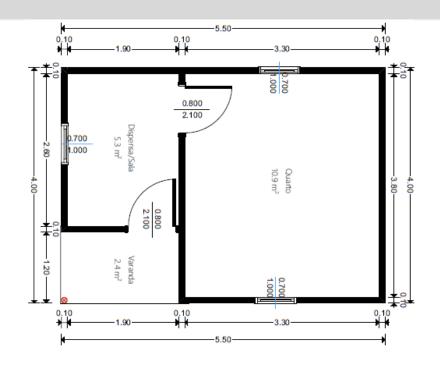
Upgrading and improvements possible, extension is also possible using an incremental approach.

#### **Environmental Consideration**

Uses locally available resources for support, allowing beneficiary to undertake upgrades and repairs as needed.

CARE has purchased the material used locally from suppliers authorized by the environmental department, and this institution has authorized cutting the material within the recommended period to allow for reproduction and growth of plants in the Veda period.

#### Other Information


Cost: 163,24 USD Area: 16,3 spm (bedroom, storage space and porch) Time: 1 Day and 3 hours Lifespan: 18 - 24 months + (lifespan increased if tarpaulin is replenished)















# Province(s):

Cabo Delgado\_

# District(s):

Ancuabe - Natove

#### Context/Trigger of response

☑ Conflict

☐ Cyclone

☐ Floods

# Setting

☑ Rural

☐ Urban

# **Shelter category**

☑ Emergency Shelter☐ Transitional Shelter

☐ Permanent Shelter

# Type of site

☐ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### TECHNICAL DESCRIPTION

#### Average Shelter life span

☑ 1-3 months

 $\ \square$  3-6 months

☐ 1-2 years

☐ 2-5 years

# **Shelter set-up time**

☑ 1-2 days

☐ 3-5 days

□ >5 days

□ >15 days

#### **Materials**

**Roofing**: Bamboo and tarpaulin **Walls**: Bamboo and wooden poles, recycled rubber rope and

sand

Floors: Sand

# **DRR/Resilience techniques used**

- Roof connections;

- Wall bracings, strong foundation;

- Wood treatment and pavement preparation

#### **Advantages**

☑ Local and culturally adapted

☑ Shelter can be upgraded and expanded, adapting the pantry/kitchen

☑ Easy and fast to build

### **Challenges/Disadvantages**

☑ Grass can be added to the cover and allow the Tarpaulin's to last longer and reduce heating. Windows included which allow for great air circulation.

☑ Requires treatment of wooden poles and bamboos to combat termites. Will not withstand cyclonic winds. Requires tarpaulin replenishment every 24 months.

# Workforce required for set up

3 skilled 2 unskilled

#### Shelter area

22 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

4.00 m X 5.50m

#### **Shelter habitability**

4.8 m<sup>2</sup> per person suitable for 3 occupants

#### **Shelter estimated cost**

Material cost: USD 139.51\* Labour cost: USD 23.73



# SHELTER RETROFITTING WITH TARP









# Province(s):

Cabo Delgado

#### District(s):

Ancuabe – Milamba 1, Milamba 2, 25 de Junho and Natove

# Context/Trigger of response

☑ Conflict

☐ Cyclone ☐ Floods

# Setting

☑ Rural ☐ Urban

# **Shelter category**

☑ Emergency Shelter☐ Transitional Shelter

☐ Permanent Shelter

# Type of site

□ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☑ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Construction materials will be made available to families and the local shelter committee will be trained to build the shelter and construction will be carried out by a team of 4 people.

These families benefited from the following materials: Bamboos, recycled, rubber rope, burnt wire, 3" nails and tarpaulin and also received shelter tool kits to be able to carry out any repairs to their shelters when they are in a state of collapse.

# Community Engagement/ Participation

Inspired by local construction and made on a model like traditional wattle and daub structures.
Helping the community to better preserve and make good use of tarpaulins as well as to extend the lifespan of the tarp by adequate installation techniques

#### **Environmental Consideration**

CARE has purchased the material used locally from suppliers authorized by the environmental department, and this institution has authorized cutting the material within the recommended period to allow for reproduction and growth of plants in the Veda period.

# Cultural Practices (Sustainability)

Grass can be added to the cover and allow the Tarpaulin's to last longer and reduce heating.

#### **Other Information**

Cost: 48,70 USD (without tarpaulin)

Area: 24 spm (on average)

Time: 3 Hours

Lifespan: 18-24 months+(lifespan increased if tarpaulin is replenished)



# SHELTER RETROFITTING WITH TARP









| Province(s):<br>Cabo Delgado<br>District(s):<br>Ancuabe - Milamba1, Milamba 2, 25 de<br>Junho and Natove |                                              | Coordinating Humanitarian Shelter and Settl                                         |                                                                  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
|                                                                                                          |                                              | Context/Trigger of response  ☑ Conflict ☐ Cyclone ☐ Floods  Setting ☑ Rural ☐ Urban |                                                                  |  |
| <b>TECHNICAL DESCRIPTION</b>                                                                             |                                              |                                                                                     |                                                                  |  |
| Average Shelter life span  ☐ 1-3 months                                                                  | Materials                                    | Advant                                                                              | ages                                                             |  |
| □ 3-6 months<br>☑ 1-2 years<br>□ 2-5 years                                                               | Roofing: Tarpaul<br>Walls: Bambo<br>and sand | o, wooden poste 🗹 Use                                                               | of few resources<br>of local materials<br>pecialization required |  |

# Shelter set-up time

☑ 1-2 days

☐ 3-5 days

□ >5 days

□ >15 days

# **DRR/Resilience techniques used**

☑ Fixing the tarpaulin

☑ Strengthening the roof and wall

Workforce required for set up structure

3 skilled 1 unskilled

Shelter area Shelter dimensions

 $24 \text{ sgm (m}^2)$  4 m X 6 m

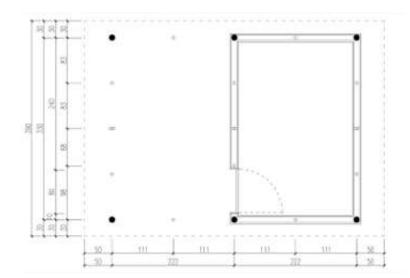
**Shelter habitability** 4.8 m<sup>2</sup> per person

suitable for 3-8 occupants

#### Challenges/Disadvantages

- ☑ Will not withstand cyclonic winds. Requires replenishment every 12 months;
- ☑ Canvas cannot withstand 100% exposure




Material cost: USD 37.75\* Labour cost: USD 10.95





# **EARLY RECOVERY/TRANSITIONAL**









| Province(s): |
|--------------|
| Cabo Delgad  |

**District(s)**: Metuge

# Context/Trigger of response

x Conflict

☐ Cyclone
☐ Floods

# Setting

x Rural
☐ Urban

# **Shelter category**

☐ Emergency Shelter x Transitional Shelter ☐ Permanent Shelter

# Type of site

☐ Temporary site

x Relocation site, Resettlement sites

☐ Host areas/affected areas **x** Return/origin location

#### TECHNICAL DESCRIPTION

#### Average Shelter life span

☐ 1-3 months ☐ 3-6 months

x 1-2 years

☐ 2-5 years

#### Materials

**Roofing**: Bamboo, tarpaulin, grass **Walls**: Bamboo, wooden poles, pau au pique with mud, nylon rope

Floors: Local mud

# **Advantages**

- □ Promotion of local and sustainable materials
   □ Appropriation of the model by the community using local design and construction techniques
- ☐ Improvement on local construction techniques

### Shelter set-up time

**x** 1-2 days

□ 3-5 days□ >5 days

□ >15 days

#### **DRR/Resilience techniques used**

Inspired by local construction techniques, this model has created a great level of acceptance

### **Challenges/Disadvantages**

☐ Lack of proper foundations

☐ Roofing materials require maintenance and replacement of grass to ensure durability

### Workforce required for set up

2 skilled 3 unskilled

#### Shelter area

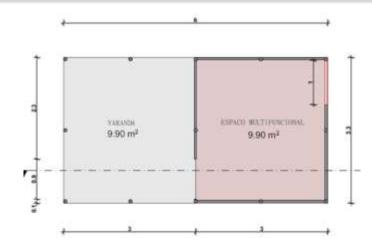
16-20 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

4m X 4m

#### **Shelter habitability**

4 m per person suitable for 3-5 occupants


#### **Shelter estimated cost**

Material cost: USD 130 Labour cost: USD 20















# Province(s):

Cabo Delgado

# District(s): Metuge

#### Context/Trigger of response

☑ Conflict

☐ Cyclone ☐ Floods

# Setting

☑ Rural
☐ Urban

# Type of site

☐ Temporary site

**Shelter category** 

☐ Emergency Shelter

☑ Transitional Shelter

☐ Permanent Shelter

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☑ Return/origin location

#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 2-5 years

# **Shelter set-up time**

☑ 1-2 days

- ☐ 3-5 days
- □ >5 days
- □ >15 days

#### **Materials**

**Roofing**: Bamboo, tarpaulin **Walls**: Bamboo, wooden poles, pau

au pique with mud

Floors: Local mud

#### DRR/Resilience techniques used

Inspired by local construction techniques, this model has created a great level of acceptance

#### **Advantages**

- ☐ Possibility of extension of the shelter made by the family over time
- ☐ The veranda allows better ventilation and open space to the whole structure
- ☐ It is possible to close the veranda in a second moment and create a new room

### Challenges/Disadvantages

- ☐ Lack of proper foundations
- ☐ Roofing materials require maintenance and replacement of tarps over time

#### Workforce required for set up

x skilled x unskilled

#### Shelter area

9.90 to 19.80 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

3m X 3.3m 3.3m X 6m

#### **Shelter habitability**

3.3m to 3.9m per person suitable for 3-5 occupants

#### **Shelter estimated cost**

Material cost: USD 100 Labour cost: USD 20









# Province(s):

District(s):

Manica, Sofala

Sussundenga, Buzi

# Context/Trigger of response ☐ Conflict

☐ Floods

Setting

☑ Rural

☐ Urban

# Type of site

☐ Temporary site

**Shelter category** 

☐ Emergency Shelter

☑ Transitional Shelter

☐ Permanent Shelter

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location



# Average Shelter life span

☐ 1-3 months

☐ 3-6 months

☐ 1-2 years

☑ 2-5 years

# **Shelter set-up time**

☐ 1-2 days

☐ 3-5 days

□ >15 days

#### **Materials**

**Roofing**: Local timber, corrugated galvanized iron (CGI) roofing sheets

**Walls**: Local wooden poles, "macane" sticks, mud-plastering

Floors: Soil

#### **DRR/Resilience techniques used**

Resilience techniques, such as wall weaving, enhance strength, while robust foundations and secure roof connections ensure overall structural stability and durability.

#### **Advantages**

- ☐ The transitional shelters support the early recovery efforts initiated by the communities.
- ☐ The shelter align with cultural preferences and traditional building practices, fostering community acceptance.
- ☐ Engaging local artisans in the construction process helps to build local capacity and transfer BBS construction practices within the community.

# **Challenges/Disadvantages**

- ☐ Local materials may be in short supply or of inconsistent quality, potentially affecting the durability of the shelter.
- ☐ The skill levels of local artisans can vary, leading to inconsistencies in construction quality.

# Workforce required for set up

1 skilled 2 unskilled

#### Shelter area

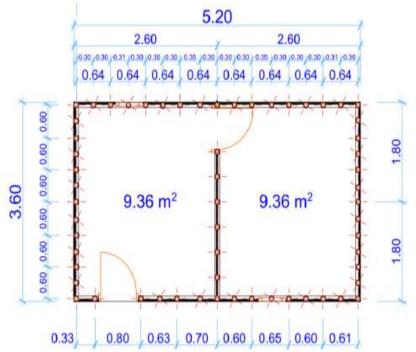
18 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

5.15 m X 3.5 m

#### Shelter habitability

3.6 m per person suitable for 5 occupants


#### **Shelter estimated cost**

Material cost: USD 700 Labour cost: USD 70



# **EARLY RECOVERY SHELTER**









# Province(s):

Cabo Delgado

#### District(s):

Montepuez and Namuno

#### **Context/Trigger of response**

- ☐ Conflict X
- ☐ Cyclone
- ☐ Floods

# Setting

☐ Rural X ☐ Urban

- ☐ Permanent Shelter

  Type of site
- ☐ Temporary site

**Shelter category** 

☐ Emergency Shelter

☐ Temporary Shelter X

- ☐ Relocation site, Resettlement sites X
- ☐ Host areas/affected areas X
- ☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Construction with hired labor and support from beneficiaries.

#### **Community Engagement/ Participation**

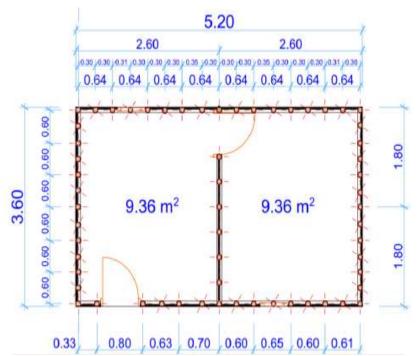
Community involved from the consultation process and presentation of the project. They are trained in shelter construction and protection, and participate in the construction with manpower, using traditional techniques.

#### **Environmental Consideration**

Local materials without chemicals, community involvement in the construction and long-term maintenance ensures its sustainability. 70% of materials from the forest (bamboo and poles), but these materials have been harvested following regulations established by national authorities.

# **Cultural Practices (Sustainability)**

Use of local materials, resilient construction methods utilizing traditional design through community participation, including sustainable practices compatible with the local environment, training and employing local labor while incorporating cultural values such as traditional aesthetics (drawings and paintings).


#### **Other Information**

Quick construction of resilient shelters relies on community engagement on the construction process. Wooden poles and bamboo requires treatment which is limited to a specific period on the market



# **EARLY RECOVERY SHELTER**







### Province(s): Cabo Delgado

District(s): Montepuez and Namuno

#### Context/Trigger of response

☐ Conflict X ☐ Cyclone

☐ Floods

# Setting

☐ Rural X ☐ Urban

#### **Shelter category**

☐ Emergency Shelter ☐ Transitional Shelter X

☐ Permanent Shelter

# Type of site

☐ Temporary site

☐ Relocation site, Resettlement sites X

☐ Host areas/affected areas X ☐ Return/origin location

#### TECHNICAL DESCRIPTION

#### Average Shelter life span

- ☐ 1-3 months ☐ 3-6 months
- ☐ 1-2 years
- ☐ 2-5 years X

# Shelter set-up time

- ☐ 1-2 days
- ☐ 3-5 days X
- $\square$  >5 days

- □ >15 days

# Workforce required for set up otential hazards like heavy storms and

2 skilled 3 unskilled

#### Shelter area

18.72 sqm (m<sup>2</sup>)

#### **Materials**

Roofing:Bamboo, tarps, tire cords, nails, galvanized wires

Walls: Pau a pique (Bamboo, tire cords and galvanized wires, galvanized Materials adapted to the local context, climate, cultural nails, wooden poles, Mud, Burnt oil.

Doors/ windows: Bamboo, tire cords and galvanized wires, galvanized nails Efficient and low-cost construction system.

Bolt lock. Floors: Soil

techniques: designed to withstand

cyclones ☐ BBB (Built, Back Better)

workshops test designs with carpenters and community members

#### **Shelter dimensions**

5.20 m X 3.60 m

# **Shelter habitability**

3.74m per person suitable for 5 occupants

#### **Advantages**

☐ Provide shelter and repairs to IDPs and host communities in need, offering safe and dignified conditions.

practices, and local construction techniques.

☐ Offer work to communities through local labor.

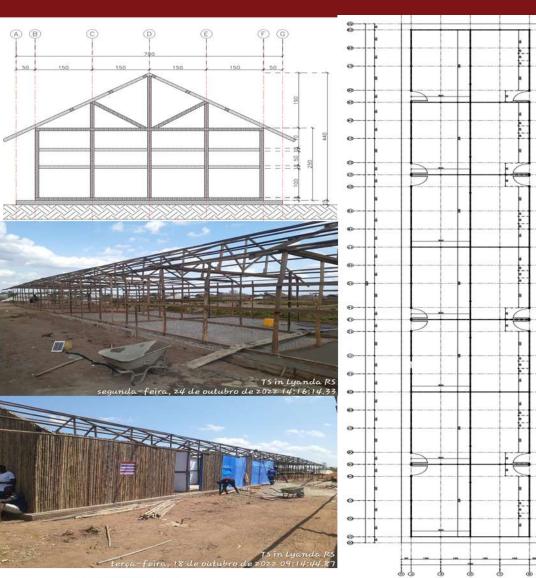
#### **Challenges/Disadvantages**

□ preparedness strategies in construction □ Occasional community engagement in the construction □ process.

☐ Procurement of key shelter materials.

☐ Restrictions on the exploitation of forest materials due to seasonal bans.

☐ Rainy season.


#### **Shelter estimated cost**

Material cost: USD 325.47 Labour cost: USD 23.72



# **EARLY RECOVERY/TRANSITIONAL SHELTER (COMMUNAL)**





Province(s): Cabo Delgado

District(s): Mueda

**Context/Trigger of response** 

⊠Conflict

☐ Cyclone ☐ Floods

Setting

☑ Rural☐ Urban

**Shelter category** 

☐ Permanent Shelter

Type of site

☐ Temporary site

 $\hfill\square$  Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

The construction uses locally sourced available material provided by NRC including roof CGI zinc sheet.

The construction of the shelters is done by a team of 5-6 skilled and unskilled laborers.

The construction includes a block of 7 to 8 shelters in one communal block. Each block has the capacity to receive 14 to 16 families at once for the necessary period before transitioning to the their individual/familiar shelter.

# **Community Engagement/Participation**

NRC staff conducts community engagements prior to provision of the assistance to explain the project including eligibility and vulnerability selection criteria.

of the Since NRC provided part of the assistance in a team of Cash, the community engagement includes sensitization of beneficiary families on use of the Cash for shelter for the intended purpose such as the purchase of construction material. In addition, the community engagement includes explaining the availability of technical support for the construction of the shelter provided by NRC and through skilled community laborers.

The selected construction team is trained, including familiarization on the designs of the shelters to be constructed.

# Cultural Practices (Sustainability)

The communal topology ensures incorporation of local material, and construction techniques including typology

#### **Environmental Consideration**

The shelters are constructed using locally sourced material available in the targeted locations, mainly bamboo and wood poles, allowing upgrades and/or repairs when needed.



# **EARLY RECOVERY/TRANSITIONAL SHELTER (COMMUNAL)**





| Province(s): Cabo Delgado_ |  |
|----------------------------|--|
| District(s): Mueda         |  |
|                            |  |

| Context/Trigger of response  ☑ Conflict ☐ Cyclone ☐ Floods | Shelter category  ⊠ Emergency Shelter  ⊠Transitional Shelter  □ Permanent Shelter                                          |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Setting  ⊠ Rural  □ Urban                                  | Type of site  ☐ Temporary site  ☐ Relocation site, Resettlement sites ☐ Host areas/affected areas ☐ Return/origin location |

3 skilled 3 unskilled

**Shelter area** 

252 sqm (m<sup>2</sup>)

| TECHNICAL DESCRIPTION     |                                       |
|---------------------------|---------------------------------------|
| Average Shelter life span | Materials  Posfing CCI Posf sine wood |
| ☐ 1-3 months              | Roofing: CGI Roof zinc, wood          |
| ☐ 3-6 months              | trusses, nails, wire                  |
| ☐ 1-2 years               | Walls: Wood poles, bamboo,            |
| ⊠2-5 years                | mud,                                  |
|                           | Floors: Concrete floor & soil         |
| Shelter set-up time       | DRR/Resilience techniques used        |
| ☐ 1-2 days                | Use of resistant wood pole            |
| ☐ 3-5 days                | dimensions and a short distances      |
| □ >5 days                 | between its to reenforce the          |
| □ >15 days                | bracing between the structural        |

[2021 - 2022]

bracing between the structural elements. Roof with enough slope to ensure Workforce required for set up quick drainage of the water during the rainy season. The wood poles column sowed

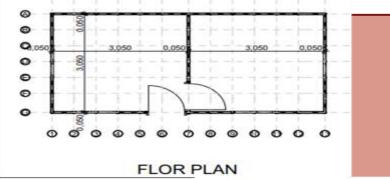
with enough dept to resist winds. **Shelter habitability Shelter dimensions** 3,5 m<sup>2</sup>/person 6m X 42 m suitable for 70 occupans

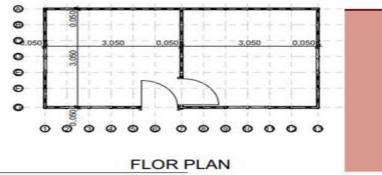
# **Advantages**

☐Flexible Shelter solution for displaced people on transit or recently arrived and waiting for plot allocation and shelter assistance □Independents units within the communal shelter

# **Challenges/Disadvantages**

☐Same lack of privacy due the communality □Lack of internal partition within each family


#### **Shelter estimated cost**


Material cost: USD 5000\* Labour cost: USD 400



# **EARLY RECOVERY/ TRANSITIONAL SHELTER**







| Province( | <b>(s)</b> : | Cabo | Delgado |
|-----------|--------------|------|---------|
|-----------|--------------|------|---------|

District(s): Mueda, Muidumbe, Quissanga,

Nangade

# Context/Trigger of response

 □ Conflict ☐ Cyclone

☐ Floods

# Setting

□ Rural

□ Urban

# **Shelter category**

☐ Emergency Shelter **⊠**Transitional Shelter

☐ Permanent Shelter

#### Type of site

☐ Temporary site

⊠Relocation site, Resettlement sites



#### Methodology

The construction uses locally NRC staff conducts sourced modality.

The construction of the shelters criteria. shelters.

shelter ensuring ownership of community the it.

tool kits: hammer, shovel, hoe, community laborers. activities.

# **Community Engagement/ Participation**

community available material engagements prior to provision of the provided by NRC through cash assistance to explain the project including eligibility and vulnerability selection

is done by a team of 3-4 people Since NRC provided part of the assistance to assist the families unable to in Cash, the community engagement erect the structure of the includes sensitization of beneficiary families on use of the Cash for shelter for The mudding of the walls is the intended purpose such as the purchase done by the family members of of construction material. In addition, the includes engagement explaining the availability of technical The shelter assistance includes support for the construction of the shelter additional shelter construction provided by NRC and through skilled

hacksaw and measuring tape, The selected construction team is trained, rope to support the construction including familiarization on the designs of the shelters to be constructed.

#### **NRC CASH MODALITY FOR SHELTER ASSISTANCE**

NRC uses Cash as one of the modalities to assist the conflict affected people in Cabo Delgado. The NRC Cash for shelter support is part of a broader programme that also includes technical components defined by the context and needs. In the design of an intervention in Cash for Shelter, the technical components are prioritised because they greatly influence the impact of intervention.

NRC uses Cash for shelter only when it is appropriate to the context, needs, and market conditions, and does not expose beneficiaries to unacceptable risk.

#### **Environmental Consideration**

The shelters are constructed using locally sourced material available in the targeted locations allowing upgrades and/or repairs when needed.

The dry grass improves the interior temperature of the shelter by reducing the heat including protection and extension of the tarpaulin lifespan.



# EARLY RECOVERY/ TRANSITIONAL SHELTER RETROFITTING





| Province(s): Cabo Delgado_  District(s): Mueda, Muidumbe, Nangade, Quissanga | Context/Trigger of response  ☑ Conflict ☐ Cyclone ☐ Floods | Shelter category  ☐ Emergency Shelter  ☑Transitional Shelter  ☐ Permanent Shelter                 |
|------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                              | Setting<br>⊠ Rural<br>□ Urban                              | Type of site  ☐ Temporary site  ☐ Relocation site, Resettlement sites ☐ Host areas/affected areas |

#### TEC

**Shelter area** 

18 sqm (m<sup>2</sup>)

|                                                                              |                                                                                                                                                                                 | ⊠Return/origin location                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TECHNICAL DESCRIPTION                                                        |                                                                                                                                                                                 | Est Clumyong in location                                                                                                                                                                                                                                                                |
| Average Shelter life span  ☐ 1-3 months ☐ 3-6 months ☐ 1-2 years ☐ 2-5 years | Materials Roofing: Tarpaulin, Dry grass, Bamboo and wood poles Walls: Wood poles, bamboo, mud,                                                                                  | Advantages  □Cash assistance for crisis-affected people is the most dignified form of assistance. Cash gives the beneficiaries greater choice and control over how best to prioritize their own needs.                                                                                  |
| Shelter set-up time  ☐ 1-2 days ☐ 3-5 daysx ☐ >5 days ☐ >15 days             | Floors: soil  DRR/Resilience techniques used  Use of resistant wood pole dimensions and a short distances between its to reenforce the bracing between the structural elements. | "The cash for shelter is often more economical programming, faster, more flexible than in-kind distribution assistance  Challenges/Disadvantages  □The cash for shelter requires proper set up of work, monitor and continuous engaging people to use the Cash for the intended purpose |

#### Roof with enough slope to ensure Workforce required for set up quick drainage of the water during 1 skilled 2 unskilled the rainy season.

The wood poles column sowed with enough dept to resist winds.

# **Shelter dimensions** 3m X 6 m

**Shelter habitability** 3,5 m<sup>2</sup>/person suitable for 6 occupants

☐ The tarpaulins require replacement after one year.

Shelter estimated cost

"If people have more urgent needs, they might use cash in

Material cost: USD 250\* Labour cost: USD 50

other ways than the intended ( as they would sell or

exchange the in-kind to fulfil other needs)



# SHELTER RETROFITTING

















Cabo Delgado

District(s):

Chiure, Quissanga



x Conflict

☐ Cyclone ☐ Floods

Setting

x Rural □ Urban

# **Shelter category**

☐ Emergency Shelter x Transitional Shelter

☐ Permanent Shelter

# Type of site

☐ Temporary site

x Relocation site, Resettlement sites

☐ Host areas/affected areas

x Return/origin location

#### TECHNICAL DESCRIPTION

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- **x** 1-2 years
- ☐ 2-5 years

#### Shelter set-up time

- **x** 1-2 days
- ☐ 3-5 days
- □ >5 days
- □ >15 days

#### **Materials**

Roofing: Bamboo, tarpaulin

Walls: Bamboo, wooden poles, pau au pique with mud, nylon rope

Floors: Local mud

#### **Advantages**

- ☐ Adapted to specific and existing shelter needs
- ☐ Possibility of repairing and extending the shelter
- ☐ Use of local materials and construction methods
- ☐ Taking advantage of the existing structure to minimize the costs with a new intervention

#### DRR/Resilience techniques used

Distribution of shelter fixing toolkits, tarpaulins and nylon ropes, followed by a training on resilient construction techniques for local artisans and

population

# Challenges/Disadvantages

- ☐ Strong planning and specific needs assessment needed
- ☐ High skilled staff needed on the field to carry out the technical assessment of each case and decide the type of intervention to implement

# Workforce required for set up

1 skilled 4 unskilled

#### Shelter area

16-20 sqm (m<sup>2</sup>)

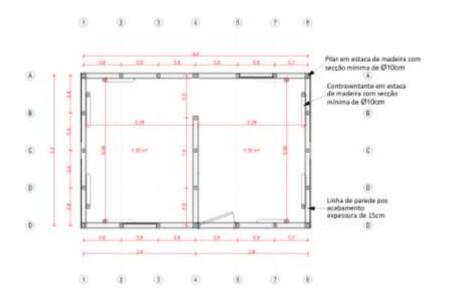
#### **Shelter dimensions**

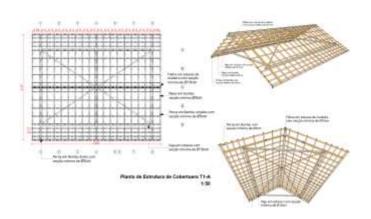
4m X 4m

#### Shelter habitability

3-4m per person suitable for 3-5 occupants

#### **Shelter estimated cost**


Material cost: USD 50-150 Labour cost: USD 20






# [TEMPORARY SHELTER/ EARLY RECORERY]







# Province(s):

Cabo Delgado

### District(s): Metuge

# Context/Trigger of response

☑ Conflict

☐ Cyclone ☐ Floods

# Setting

☑ Rural

□ Urban

# **Shelter category**

☑ Emergency Shelter☐ Transitional Shelter

☐ Permanent Shelter

# Type of site

□ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Local committee training trains community members in specific construction techniques, tool use and best practices to ensure durable and safe shelters. Provision of building materials (tarpaulin, shelter toolkit, bamboo, nails and recycled rubber rope).

Training a team of 4 people per shelter to provide practical guidance on building resilient shelters, helping with assembly and ensuring proper construction.

This approach speeds up the process and strengthens the community's ability to build and maintain sturdy shelters independently in the future.

# Community Engagement/ Participation

Resilient construction training of local artisans for direct implementation.

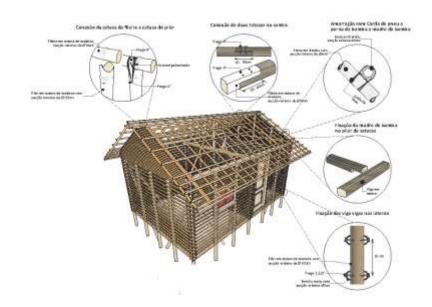
#### **Environmental Consideration**

Low environmental impact - usage of local material from certified sources

#### **Cultural Practices (Sustainability)**

Use of Traditional Techniques: Local and Renewable Materials: Use materials that are abundant in the region; Training and Capacity Building: Involve the community in the construction process; Promoting the Local Economy: Prioritizing the purchase of materials and hiring local labour.

#### **Other Information**


The beneficiaries were involved in the design of the shelter, being responsible for filling in the clay in the walls and the final finish. Involvement of women in the process of making the shelters





# TEMPORARY SHELTER/ EARLY RECORERY









| Province(s): |
|--------------|
| Cabo Delgado |

District(s): Metuge

#### **Context/Trigger of response**

☑ Conflict☐ Cyclone☐ Floods

# Setting

☑ Rural☐ Urban

# **Shelter category**

☑ Emergency Shelter☐ Transitional Shelter☐ Permanent Shelter

#### Type of site

☐ Temporary site

 $\ oxdot$  Relocation site, Resettlement sites

☐ Host areas/affected areas☐ Return/origin location

☐ Possibilities for expansion and updating Use of local materials and traditional construction techniques that

☐ Offers strong foundations and structure with bracing -

are well known by the community and easily updated

#### TECHNICAL DESCRIPTION

#### Average Shelter life span

☐ 1-3 months ☐ 3-6 months

☐ 1-2 years

☑ 2-5 years

# **Shelter set-up time**

☐ 1-2 days

□ >5 days

□ >15 days

#### **Materials**

 $\textbf{Roofing:} \ \mathsf{Grass, tire wire, nails, tire}$ 

rope

Walls: Pau a Pique (bamboo, clay,

nails etc.)
Floors: soil

# DRR/Resilience techniques used

Roof connections, use cross bracings, strong and deep foundations, wood treatment, etc.

# Challenges/Disadvantages

by the beneficiaries.

☐ Offers privacy (internal partitions)

resilient building standards are met

**Advantages** 

☐ Balancing the use of local materials with environmental conservation efforts is a challenge

☐ The total area of the house and bedrooms is small for the average mozambican family, Will not withstand cyclonic winds.

☐ Limited durability, and Ongoing Maintenance

# Workforce required for set up

4 unskilled

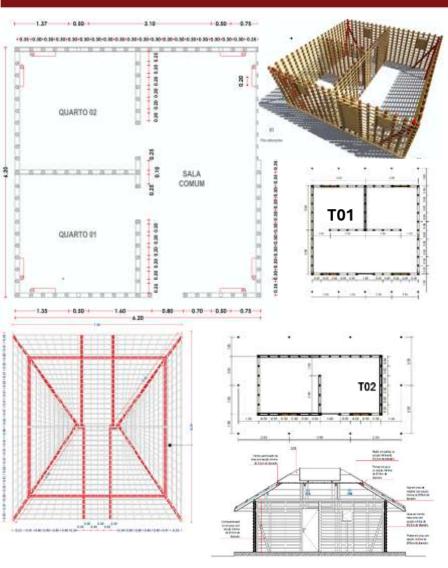
#### Shelter area Shelter dimensions

 $14.04 \text{ sqm (m}^2)$  4.8 m X 3.2 m

#### Shelter habitability

3.5m per person suitable for 4 occupants

#### **Shelter estimated cost**


Material cost: USD 280\* Labour cost: USD 79\*





# TEMPORARY SHELTER/ EARLY RECOVERY





Province(s): CABO DELGADO

District(s): MONTEPUEZ

# Context/Trigger of response

☑ Conflict

☐ Cyclone

☐ Floods

# Setting

☑ Rural

□ Urban

# **Shelter category**

☐ Emergency Shelter☑ Transitional Shelter

☐ Permanent Shelter

# Type of site

☐ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Construction with hired labour (skilled and unskilled). The construction team consisted of four craftsmen: two bricklayers and two carpenters, all hired to ensure the quality of the work. The beneficiaries of the project also took an active part, acting as helpers and contributing to the execution of the tasks.

Introduction of crown beam and legs in sticks/piles with minimum cross-section Ø10cm.

Introduction of crown beam and legs in sticks/piles with minimum cross-section Ø10cm

Introduction of bamboo that can be rolled up at the ends of the canvas: on the eaves for better fixing on the roofing and water containment structure (see illustrative details)

# Community Engagement/ Participation

Resilient construction training of local and IDP's, artisans for direct implementation.

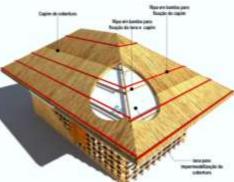
#### **Environmental Consideration**

Medium environmental impactuse of local material from certified sources (need to observe the sources of extraction of the material, especially the sticks)

# **Cultural Practices (Sustainability)**

Use of traditional techniques Local and conventional materials: Use materials that are abundant in the region (eg. Dry grass) and possibility of mix with conventional materials; Promoting the local economy: Favouring the purchase of materials and hiring local labour. And also improving new tecniques.

# **Other Information**


Those involved in this process were local and welcoming communities, with a mix of different origins, always with the aim of creating unity between all those involved.





# TEMPORARY SHELTER/ EARLY RECOVERY







Province(s): **CABO DELGADO** 

District(s): **MONTEPUEZ** 

# Context/Trigger of response

- ☑ Conflict
- ☐ Cyclone ☐ Floods

# Setting

- ☑ Rural
- ☐ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- ☐ Permanent Shelter

#### Type of site

- ☐ Temporary site
- ☑ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☐ Return/origin location

#### **TECHNICAL DESCRIPTION**

# Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- □ 1-2 years

# Shelter set-up time

- □ 1-2 days
- ☐ 3-5 davs
- □ >5 days

#### **Materials**

Roofing: Grass, tire wire, nails, tire rope,

Walls: Pau a Pique (bamboo, clay,

nails etc.) Floors: SOIL

#### **DRR/Resilience techniques used**

Wall bracings, roof connections, strong foundations, size of the union between sticks considerable, cement skirting board, wood treatment, etc.

# Workforce required for set up

1 skilled 3 unskilled

#### Shelter area

Type 1 - 18sqm (6mx3m) for small households with 5 and below family members.

Type 2 - 30sqm (5mx6m) for household size above.

#### **Shelter habitability**

3,5 m per person suitable for 6 occupants

#### **Advantages**

- ☐ Use of local materials in its highest percentage and local labor
- ☐ Possibilities for expansion and updating Use of local materials and traditional construction techniques that are well known by the community and easily updated by the beneficiaries.
- ☐ Thermal comfort, in periods of higher temperatures and heat containment, in cold periods

#### Challenges/Disadvantages

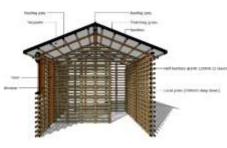
- ☐ Susceptible to burning due to tarpaulin and grass during periods of high temperatures
- ☐ Balancing the use of local materials with environmental conservation efforts is a challenge
- ☐ Limited durability, and Ongoing Maintenance

# Type 1 Total cost: 332\$

Material cost: 267\$ Labour cost: 47.39\$ Type 2 Total cost: 434\$

Material cost: 349.68\$ Labour cost: 63.29\$








# TRANSITIONAL SHELTER – HIPPED ROOF







# Province(s):

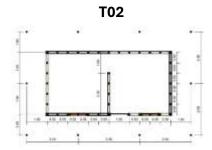
Cabo Delgado

District(s): Mueda

# Context/Trigger of response

- ☑ Conflict
- □ Cyclone
- ☐ Floods

# Setting


- ☑ Rural
- □ Urban

# **Shelter category**

- ☐ Emergency Shelter
- ☑ Transitional Shelter
- □ Permanent House

# Type of site

- ☐ Temporary site
- ☑ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☐ Return/origin location



# **TECHNICAL DESCRIPTION**

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 1-2 years

# Shelter set-up time

**Workforce required** 

1 skilled 3 unskilled

- ☐ 1-2 days
- ☐ 3-5 days

for set up

□ >15 days

# **Materials**

Local wooden poles, bamboo poles, mud daub wall for the superstructure, plastic tarpaulin and grass fixed on local wooden truss roof.

#### Shelter area

2021-2023

Type 1 - 18sqm (6mx3m) for small households with 5 and below family members.

Type 2 – 30sqm (5mx6m) for household size above.

Hipped roof is the design of shelters in Lyanda IDP site, Mueda district. Constructed with partner Solidairités International (SI) from 2021 to 2023.

#### **DRR/Resilience techniques used**

Strong roof connections, roof band reinforcement, wood treatment, etc.

# **Advantages**

- ☐ Mid-term solution, ensuring durability and stability of the housing structure.
- ☐ Provision of dignified shelter, contributing to safety, security, health, and well-being, and promotion to recovery among affected households.

# **Challenges/Disadvantages**

- ☐ Requires more advanced construction skills and materials
- ☐ Poor soil consistency requiring the need for cement for stabilization.
- ☐ Lack of water in Mueda slows the mud daubing of walls by beneficiaries.

#### Type 1 Total cost: 718\$

**Total cost: 1,150\$** 

Type 2

Material cost: 470.89\$ Material cost: 818.25\$ Labour cost: 76.03\$ Labour cost: 76.03\$

















# Province(s):

Zambezia and Nampula

#### District(s):

Chinde, Pebane, Mongicual and Angoche

#### Context/Trigger of response

- ☐ Conflict
- ☑ Cyclone
- ☐ Floods

# Setting

☑ Rural ☐ Urban Type of site

**Shelter category** 

☐ Emergency Shelter

☑ Transitional Shelter

☐ Permanent Shelter

- ☐ Temporary site ☐ Relocation site, Resettlement sites
- ☑ Host areas/affected areas
- ☑ Return/origin location

#### TECHNICAL DESCRIPTION

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- 2 1-2 years
- ☐ 2-5 years

#### Shelter set-up time

- 1-2 days
- ☐ 3-5 days
- 2 >5 days
- □ >15 days

# DRR/Resilience techniques used

with mud, nylon or rubber rope,

Floors: Local mud

plastered with adobe with cement

Based on the local model.

**Materials** 

grass

- · Promotes the improvement of local construction techniques
- · Highly accepted due to local characteristics

# **Advantages**

- ☑ Appropriation of the model by the community Walls: Bamboo, stakes, pau a pique using local design and construction techniques
  - ☑ Improvement on local construction techniques

# Challenges/Disadvantages

- ☐ Lack of proper foundations
- ☑ Roofing materials require maintenance and replacement of grass to ensure durability

# Workforce required for set up

2 skilled 3 unskilled

#### **Shelter dimensions** Shelter area

4m X 4m 16 sqm (m<sup>2</sup>)

### **Shelter habitability**

4 m per person suitable for 3-5 occupants

#### **Shelter estimated cost**

Material cost: USD 900 Labour cost: USD 120



# TEMPORARY SHELTER/ EARLY RECORERY







#### Province(s):

Cabo Delgado

#### District(s):

Mecufi – Napuilimuite and Moge

#### Context/Trigger of response

☐ Conflict

☑ Cyclone

☐ Floods

#### Setting

☑ Rural

□ Urban

#### **Shelter category**

☐ Emergency Shelter

☐ Transitional Shelter
☐ Permanent Shelter

#### Type of site

☐ Temporary site

☐ Relocation site, Resettlement sites

☑ Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

CARE establishes the most vulnerable families through criteria and is also based on the level of destruction of homes by Cyclone Kenneth.

In addition to the construction committee formed, material was allocated to the selected families and the committee moved forward with construction.

The construction committee was also encouraged with building materials. The material supplied includes beams, bamboo, zinc sheets, tire rope, cashew oil and nails.

#### Community Engagement/ Participation

After construction, women/men can line bamboo walls with mud to strengthen shelter and provide a strong barrier

#### **Environmental Consideration**

Promotion of use of bamboo as sustainable material, but the design durability is limited by the lifespan of the tarp and bamboo is treated with anti termite solution.

CARE has purchased the material used locally from suppliers authorized by the environmental department, and this institution has authorized cutting the material within the recommended period to allow for reproduction and growth of plants in the Veda period.

#### **Cultural Practices (Sustainability)**

This permanent solution is adequate for the context as it is socially accepted and can be easily replicated. It incorporates BBB principles, with some attention to the traditional technique, to increase its resilience

#### Other Information

Cost: 500 USD Area: 24.5 spm

Time: 8 day for construction



# TEMPORARY SHELTER/ EARLY RECORERY







| Province(s):<br>Cabo Delgado |  |
|------------------------------|--|
| District(s):                 |  |

Mecufi - Napuilimuite and Moge

# Context/Trigger of response ☐ Conflict ☑ Cyclone ☐ Floods Setting ☑ Rural

☐ Urban

| nating Humanitarian Shelter and Settleme                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------|
| Shelter category  ☐ Emergency Shelter ☐ Transitional Shelter ☐ Permanent Shelter                                          |
| Type of site  ☐ Temporary site ☐ Relocation site, Resettlement sites ☑ Host areas/affected areas ☐ Return/origin location |

#### **TECHNICAL DESCRIPTION**

# Average Shelter life span ☐ 1-3 months ☐ 3-6 months Materials Roofing: Zinc Sheets, wood beans and nails.

☐ 1-2 years

Walls: Pau a Pique (bamboo, stick timer, mud plastering, nails off different sizes, recycled rubber rope and wire)

Floors: soil

# **DRR/Resilience techniques used**

Roof connections, wall bracings, strong foundations, wood treatment and pavement preparation

#### **Advantages**

- ☑ Easy to build
- ☑ Traditional technique well known by the community
- ☑ It can be upgraded
- ☑ Improved ventilation and privacy
- ✓ Use local materials

#### **Challenges/Disadvantages**

- ☑ High quantity of materials required Requires maintenance
- ☑ Takes longer to build than an emergency shelter

#### Workforce required for set up

10 skilled 4 unskilled

☐ 1-2 days

□ 3-5 days☑ >5 days

□ >15 days

Shelter area 24,5 sqm (m<sup>2</sup>) Shelter dimensions 3.90m X 6.30m **Shelter habitability** 4.8 m² per person suitable for 5 occupants

#### **Shelter estimated cost**

Material cost: USD 500\* Labour cost: USD (At no cost)





# PERMANENT SHELTERS/DURABLE SOLUTIONS











# Province(s):

Cabo Delgado

#### District(s):

Chiure, Meculane

#### **Context/Trigger of response**

- ☐ Conflict X
- ☐ Cyclone ☐ Floods

#### Setting

- ☐ Rural
- ☐ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- ☐ Transitional Shelter☐ Permanent Shelter X

#### Type of site

- ☐ Temporary site
- ☐ Relocation site, Resettlement sites X
- ☐ Host areas/affected areas
- ☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Construction with hired labor and support from project participants.

#### **Community Engagement/ Participation**

Community involved from the consultation process and presentation of the project.

They are trained in shelter construction and protection, and participate in the construction with manpower, using traditional techniques

#### **Environmental Consideration**

Local materials without chemicals, community involvement in the construction and long-term maintenance ensures its sustainability. 70% of materials from the forest (bamboo and poles), but these materials have been harvested following regulations established by national authorities.

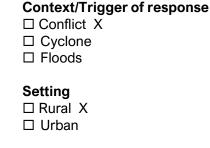
#### **Cultural Practices (Sustainability)**

Use of local materials, resilient construction methods utilizing traditional design through community participation, including sustainable practices compatible with the local environment, training and employing local labor while incorporating cultural values such as traditional aesthetics (drawings and paintings).

#### **Other Information**

This permanent solution is adequate for the context as it is socially accepted and can be easily replicated. It incorporates BBB principles, with some attention to the traditional technique, to increase its resilience.












# Province(s): Cabo Delgado District(s): Chiure



| Shelter category  ☐ Emergency Shelter ☐ Transitional Shelter ☐ Permanent Shelter X                                          |
|-----------------------------------------------------------------------------------------------------------------------------|
| Type of site  ☐ Temporary site ☐ Relocation site, Resettlement sites X ☐ Host areas/affected areas ☐ Return/origin location |
| dvantages  More covered space and privacy.                                                                                  |

#### TECHNICAL DESCRIPTION Average Shelter life span

☐ 1-3 months ☐ 3-6 months ☐ 1-2 years ☐ 2-5 years X

#### **Shelter set-up time**

☐ 1-2 days ☐ 3-5 days X □ >5 days □ >15 days

#### **Materials**

Roofing: Iron Sheet Walls:: Pau a pique (Bamboo, tire cords and galvanized wires, galvanized nails, wooden poles, Mud, Burnt oil. Doors/ windows: Bamboo, tire cords and galvanized wires, galvanized nails Bolt lock. Floors: Soil

# **DRR/Resilience techniques used**

□preparedness strategies in construction techniques: designed to withstand potential hazards like heavy storms and cyclones

#### Workforce required for set up☐ BBB (Built, Back Better) workshops test designs with

carpenters and community members **Shelter habitability** 

3.6 m per person

suitable for 5 occupants

#### Shelter dimensions

5 m X 3 m

# 

☐ More durability ☐ Safe construction

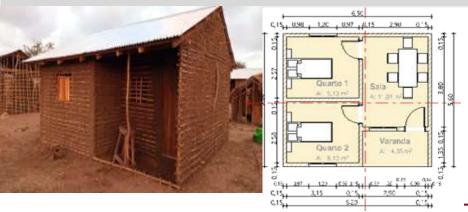
☐ Technical knowledge provided to beneficiaries.

#### **Challenges/Disadvantages**

☐ It takes too long to be built.

☐ Requires technical skills.

☐ If built by beneficiaries, requires a lot of mobilization.


# **Shelter estimated cost**

Material cost: USD 670 \* Labour cost: USD 23.72









| Province(s):<br>Cabo Delgado |  |  |
|------------------------------|--|--|
| District(s):<br>Mecufi       |  |  |

| Shelter category  ☐ Emergency Shelter ☐ Transitional Shelter ☐ Permanent Shelter X                                          |
|-----------------------------------------------------------------------------------------------------------------------------|
| Type of site  ☐ Temporary site ☐ Relocation site, Resettlement sites X ☐ Host areas/affected areas ☐ Return/origin location |



#### **TECHNICAL DESCRIPTION**

Shelter area

33,6 sqm (m<sup>2</sup>)

| Average Shelter life span  ☐ 1-3 months ☐ 3-6 months ☐ 1-2 years ☐ 2-5 years X | Materials Roofing: Iron Sheet Walls:: Pau a pique (Bamboo, tire cords and galvanized wires, galvanized nails, wooden poles, |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| L 2-0 years A                                                                  | Mud, Burnt oil. Doors/ windows:                                                                                             |
| Shelter set-up time                                                            | Bamboo, tire cords and galvanized                                                                                           |
| □ 1-2 days                                                                     | wires, galvanized nails Bolt lock.                                                                                          |
| ☐ 3-5 days                                                                     | Floors: Soil                                                                                                                |
| □ >5 days X                                                                    | DRR/Resilience techniques used                                                                                              |

DRR/Resilience techniques used □preparedness strategies in construction techniques: designed to withstand potential hazards like heavy storms and cyclones workshops test designs with carpenters and community members

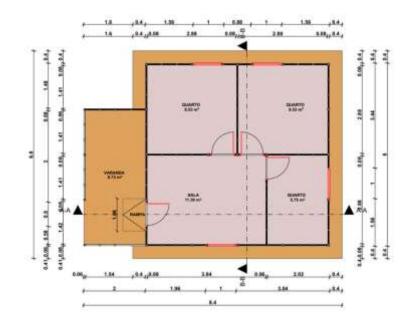
Context/Trigger of response

☐ Conflict X ☐ Cyclone ☐ Floods

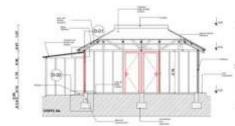
Setting ☐ Rural X ☐ Urban

Workforce required for set up☐ BBB (Built, Back Better) **Shelter dimensions** Shelter habitability 3.6 m per person 5 m X 3 m suitable for 5 occupants **Advantages** ☐ More covered space and privacy. ☐ More durability ☐ Safe construction ☐ Technical knowledge provided to beneficiaries. Easy to build

- Traditional technique well known by the community
- It can be upgraded
- Improved ventilation and privacy
- Use local materials


| Challenges/Disadvantages                       |
|------------------------------------------------|
| ☐ It takes too long to be built.               |
| ☐ Requires technical skills.                   |
| ☐ If built by beneficiaries, requires a lot of |
| Sheller est all alled cost                     |

Material cost and Labour cost: USD 840 \*not including logistics




# PERMANENT DURABLE SOLUTION









Province(s): Cabo Delgado

x Conflict ☐ Cyclone ☐ Floods District(s): Metuge Setting x Rural ☐ Urban

# ☐ Emergency Shelter □ Transitional Shelter x Permanent Shelter Type of site ☐ Temporary site x Relocation site, Resettlement sites ☐ Host areas/affected areas ☐ Return/origin location

#### TECHNICAL DESCRIPTION

# Average Shelter life span

- ☐ 1-3 months ☐ 3-6 months
- ☐ 1-2 years **x** 2-5 years

#### Shelter set-up time

- ☐ 1-2 days
- ☐ 3-5 days
- **x** >5 days
- □ >15 days

#### **Materials**

Roofing: Corrugated galvanized iron sheet

Walls: Bamboo, wooden poles, iron rods, cement

Floors: Cement

#### local materials

**Advantages** 

☐ Offers privacy, strong foundations and structure with bracings

☐ Possibilities of expansion and upgrade easily with

☐ Resilient construction standards are met

**Shelter category** 

#### **DRR/Resilience techniques used**

Resilient construction trainings for local artisans and population for direct implementation and development of maintenance skills

#### Challenges/Disadvantages

- ☐ High use of bamboo and wooden poles
- ☐ Costs may be elevated for the most vulnerable communities
- ☐ Requires plastering to protect the walls from rain, thus increasing the costs

#### Workforce required for set up

2 skilled 3 unskilled

Shelter area 16-32 sqm (m<sup>2</sup>)

**Shelter dimensions** 4m X 4m

Shelter habitability

6 m per person suitable for 5-7 occupants

Context/Trigger of response

#### **Shelter estimated cost**

Material cost: USD 2,000-2,500

Labour cost: USD 400





# PERMANENT AND TRANSITIONAL HOUSING SOLUTIONS















#### Province(s):

Cabo Delgado, Nampula, Manica, Sofala

#### District(s):

Pemba, Memba, Sussundenga, Beira, Buzi

#### Context/Trigger of response

- ☑ Conflict
- ☑ Cyclone
- ☐ Floods

#### Setting

- ☑ Rural
- ☑ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- ☑ Transitional Shelter
- ☑ Permanent House

#### Type of site

- □ Temporary site
- ☑ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☑ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

The implementation modality for the construction of resilient houses and early recovery shelters is based on a community led approach which requires effective participation of local artisans, the beneficiaries, the local authorities and the community. The local artisans (women and men) receive training in resilient construction and subsequent on-thejob training is done throughout the project implementation. Depending on the typology of the house, the materials are collected locally or brought to the community, following strict environmental and resilient standards.

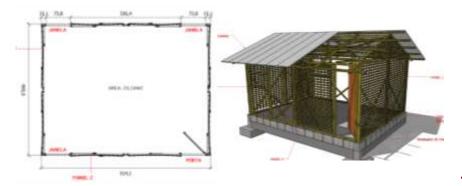
# Community Engagement/ Participation

The beneficiaries participate in all the decision making of their house construction, some participate as artisans and the most vulnerable, with no labour capacity, are supported with labourers.

#### **Environmental Consideration**

When using local materials, ensuring that the materials are treated and utilized in a manner that prolongs their durability is prioritized, thereby reducing the need for frequent rebuilding due to material degradation. Additionally, we ensure that suppliers possess the required certificates and permits for material provision.

#### **Cultural Practices (Sustainability)**


We collaborate with the community to incorporate their cultural values and construction preferences into the house designs. By aligning interventions with traditional practices and applying Build Back Safer techniques, we ensure knowledge transfer, community acceptance, and the sustainability of the constructions.

#### **Other Information**

We encourage the participation of women in all construction activities and provide equal training for both men and women on Build Back Safer techniques and PSEA, which is a mandatory requirement for program involvement.







Province(s): Cabo Delgado

District(s): Ibo district

Context/Trigger of response

☐ Conflict☑ Cyclone

☐ Floods

Setting

☑ Rural

☐ Urban

Type of site

☐ Temporary site

**Shelter category** 

☐ Emergency Shelter

☐ Transitional Shelter

✓ Permanent Shelter

☑ Relocation site, Resettlement sites

☑ Host areas/affected areas

☐ Return/origin location

#### TECHNICAL DESCRIPTION



☐ 1-3 months

☐ 3-6 months ☐ 1-2 years

□ 1-2 years☑ 2-5 years

#### **Shelter set-up time**

☐ 1-2 days

☐ 3-5 days

☑ >5 days

□ >15 days

#### **Materials**

Roofing: corrugated galvanized iron

(CGI) roofing sheets

**Walls**: Pau a Pique (bamboo, timber, rocks, cement plastering, etc.), doors and windows

Floors: concrete flooring

#### **DRR/Resilience techniques used**

Strong foundations, cross bracing and strong roof anchorage, ensuring stability and resistance to natural hazards such as floods or strong winds.

#### Advantages

- ☐ Local materials and traditional building methods ensure that the houses align with cultural practices and are accepted by the community.
- ☐ Applying Build Back Safer construction techniques result in houses resilient to climate shocks.
- ☐ Familiar materials and techniques allows for quicker construction, aiding in the rapid recovery and stabilization of community's post-disaster.

# Challenges/Disadvantages ☐ Local artisans may require

- ☐ Local artisans may require additional training to effectively implement Build Back Safer techniques.
- ☐ Sourcing sufficient local materials and skilled labor, limit the ability to meet housing demands in lbo islands.

#### **Shelter estimated cost**

Material cost: USD 1,600\* Labour cost: USD 100

\*not including logistics

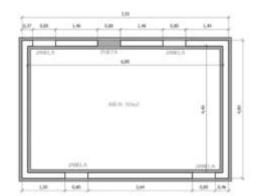


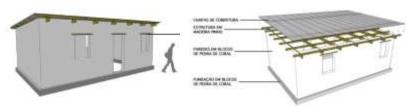




#### Workforce required for set up

2 skilled 3 unskilled


Shelter area 20.56 sqm (m<sup>2</sup>)


Shelter dimensions 4m X 5.14m **Shelter habitability** 4.11m per person suitable for 5 occupants













# Province(s):

Cabo Delgado

# District(s): Ibo district

#### Context/Trigger of response

- ☐ Conflict
- ✓ Cyclone☐ Floods

#### Setting

- ☑ Rural
  ☐ Urban
- Type of site
  - ☐ Relocation site, Resettlement sites
  - $\ensuremath{\square}$  Host areas/affected areas
  - ☐ Return/origin location

**Shelter category** 

☐ Temporary site

☐ Emergency Shelter

□ Transitional Shelter

✓ Permanent Shelter

#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 1-2 years
- ☑ 2-5 years

#### **Shelter set-up time**

- ☐ 1-2 days
- ☐ 3-5 days
- □ >5 days

#### **Materials**

Roofing: corrugated galvanized iron (CGI) roofing sheets

Walls: Coral Ragstone Floors: Concrete floor

#### **DRR/Resilience techniques used**

The use of coral ragstone, when responsibly sourced, is an environmentally friendly, durable and resilient option, as it makes use of naturally occurring

materials.

#### Workforce required for set up

3 skilled 2 unskilled

#### Shelter area

34.56 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

7m X 4.80m

#### **Shelter habitability**

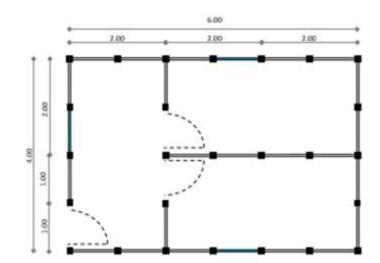
46.9m per person suitable for 5 occupants

#### **Advantages**

- ☐ Coral ragstone is a strong and long-lasting material, offering excellent structural integrity and resistance as well as great insulating properties.
- ☐ Coral ragstone is locally available, which makes construction more affordable as we reduce transportation costs.
- ☐ Houses require less maintenance over time compared to other materials, reducing long-term upkeep costs.

#### **Challenges/Disadvantages**

- ☐ Coral ragstone may be in limited supply, especially on small islands, making it difficult to meet large-scale housing demands.
- ☐ Requires specialized skills and labor, which may not be readily available, leading to increased construction time and costs.


#### **Shelter estimated cost**

Material cost: USD 1,200\* Labour cost: USD 150

















Cabo Delgado, Nampula, Manica

District(s):

Pemba, Memba, Sussundenga

#### Context/Trigger of response

- □ Conflict
- ☑ Cyclone☐ Floods

#### Setting

☑ Rural ☑ Urban Type of site

**Shelter category** 

☐ Temporary site

☐ Emergency Shelter

☐ Transitional Shelter

☑ Permanent House

- ☑ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☐ Return/origin location

☐ More durable housing solution compared to

☐ Shelter can be upgraded and expanded

#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- □ 1-2 years

#### **Shelter set-up time**

- ☐ 1-2 days
- ☐ 3-5 days
- □ >5 days

#### Materials

**Roofing**: corrugated galvanized iron (CGI)

Walls: Pau a Pique (bamboo, timber, rocks, mud-cement

plastering, etc.), doors and windows

DRR/Resilience techniques used

strong foundations, cement skirting

Roof connections, wall bracings,

board, wood treatment, etc.

Floors: soil

#### Challenges/Disadvantages

emergency shelter

☐ Local and culturally adapted

term recovery and stability

**Advantages** 

☐ Balancing the use of local materials with environmental conservation efforts is a challenge

☐ Improves overall well-being and promotes long-

- ☐ Can be more expensive than emergency or transitional shelter
- $\hfill\square$  Takes longer to construct than emergency shelter
- ☐ May require more advanced construction skills and materials

#### Workforce required for set up

2 skilled 2 unskilled

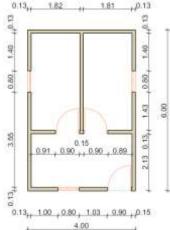
Shelter area 24 sqm (m<sup>2</sup>)

6m X 4m

#### **Shelter habitability**

4.8m per person suitable for 5 occupants

#### Shelter estimated cost


Material cost: USD1,500\* Labour cost: USD 120

\*not including logistics



**Shelter dimensions** 

















#### Context/Trigger of response ☐ Conflict ☑ Cyclone ☐ Floods Setting ☑ Rural ☐ Urban

**Shelter category** ☐ Emergency Shelter □ Transitional Shelter ☑ Permanent House Type of site ☐ Temporary site ☑ Relocation site, Resettlement sites ☐ Host areas/affected areas ☐ Return/origin location

#### **TECHNICAL DESCRIPTION**

# Average Shelter life span Materials

☐ 1-3 months ☐ 3-6 months ☐ 1-2 years 

Memba

#### Shelter set-up time

☐ 1-2 days ☐ 3-5 days

□ >5 days 

#### Roofing: corrugated galvanized iron (CGI)

Walls: Option#1: Reinforced Cement block, Option #2: CSEB (Compressed Stabilized Earther Bricks), doors and

windows Floors: soil

#### **DRR/Resilience techniques used**

Roof connections, concrete columns and bands, strong foundations, cement plastering, wood treatment, etc.

# **Advantages**

- ☐ More durable housing solution compared to the same permanent solution but with local materials and construction techniques such as Pau a Pique.
- ☐ Local and culturally adapted
- ☐ Shelter can be upgraded and expanded
- ☐ Improves overall well-being and promotes longterm recovery and stability

#### Challenges/Disadvantages

- ☐ It is more expensive than using local materials ☐ Takes longer to construct than emergency or
- transitional shelter ☐ Requires more advanced construction skills and materials

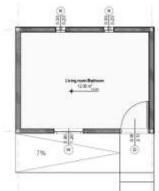
#### Workforce required for set up

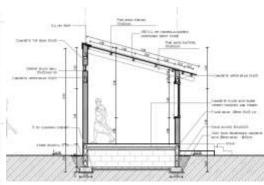
2 skilled 2 unskilled

Shelter area **Shelter dimensions** 24 sqm (m<sup>2</sup>) 6m X 4m

Shelter habitability

4.8m per person suitable for 5 occupants


#### **Shelter estimated cost**


Material cost: USD 2,300 - 2,500\*

Labour cost: USD 160









| Province(s) | ) |
|-------------|---|
| Sofala      |   |

District(s): Beira

#### Context/Trigger of response

☐ Conflict ☑ Cyclone

☐ Floods

Setting

☐ Rural

☑ Urban

#### Type of site

☐ Temporary site

**Shelter category** ☐ Emergency Shelter

☐ Transitional Shelter

☑ Permanent House

☐ Relocation site, Resettlement sites

☐ Host areas/affected areas

☑ Return/origin location

#### **TECHNICAL DESCRIPTION**



☐ 1-3 months

☐ 3-6 months ☐ 1-2 years

☐ 1-2 days

☐ 3-5 days

□ >5 days

Shelter area

12 sqm (m<sup>2</sup>)

Shelter set-up time

2024

**Materials** 

Roofing: Galvanized IBR (Inverted

Box Rib) Roof Sheeting

Walls: Reinforced Concrete block,

doors and windows

Floors: Concrete flooring

#### **Advantages**

☐ Permanent and resilient housing solution to support the recovery efforts of the family

☐ House has the possibility of expansion.

☐ Local and culturally adapted

☐ Improves overall well-being and promotes longterm recovery and stability

# DRR/Resilience techniques used

Strong roof connections, concrete

columns and bands, strong foundations, cement plastering,

wood treatment, etc.

#### Challenges/Disadvantages

☐ It is more expensive than using local materials

☐ Takes longer to construct than emergency or transitional shelter

☐ Requires more advanced construction skills and materials

☐ The house is small and offers only one room

#### Workforce required for set up

2 skilled 2 unskilled

#### **Shelter dimensions** Shelter habitability

4m per person 3m X 4m suitable for 3 occupants

#### **Shelter estimated cost**

Material cost: USD 3.200\* Labour cost: USD 330

















# PERMANENT HOUSING SOLUTIONS | ROOF REPAIRS | RETROFITTING















#### Province(s):

Cabo Delgado, Sofala

# **District(s)**: Ancuabe, Beira

#### Context/Trigger of response

- ☐ Conflict
- ☑ Cyclone☐ Floods

#### Setting

□ Rural☑ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- ☐ Transitional Shelter
  ☐ Permanent House

#### Type of site

- ☐ Temporary site
- ☐ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☑ Return/origin location

#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 1-2 years

#### Shelter set-up time

- □ 1-2 days
- ☐ 3-5 days
- ☑ >5 days
- □ >15 days

#### **Materials**

Roofing: Option#1: Galvanized IBR (Inverted Box Rib) Roof Sheeting, Hurricane clips, treated timber, umbrella nails, etc.
Option#2: Corrugated galvanized iron (CGI) Roof Sheeting, roof and wall bracings, treated timber, umbrella nails, etc.

\*Some roof repairs include reinforcement of other structural components

#### **DRR/Resilience techniques used**

Strong roof connections, roof band reinforcement, wood treatment, etc.

#### Workforce required for set up

1 skilled 2 unskilled

#### Shelter area

Coverage roof of up to 45 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

Depends on the repaired house

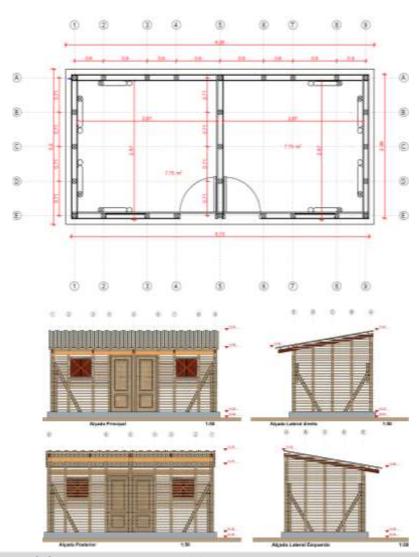
#### **Shelter habitability**

Depends on the repaired house

#### **Advantages**

- ☐ Long-term solution, ensuring durability and stability of the housing structure.
- ☐ Provision of better protection against weather elements, reducing the risk of leaks and structural damage.
- ☐ Properly repaired roofs improve insulation, leading to better energy efficiency.

#### Challenges/Disadvantages


- ☐ Requires more advanced construction skills and materials
- In some cases, focusing solely on the roof might neglect other structural components that also need attention, compromising overall building integrity.

#### **Shelter estimated cost**

Material cost: USD 1,200\* Labour cost: USD 215







Province(s): Cabo Delgado

District(s): Pemba

#### Context/Trigger of response

✓ Conflict☐ Cyclone

☐ Floods

#### Setting

□ Rural☑ Urban

#### **Shelter category**

✓ Emergency Shelter☐ Transitional Shelter

☐ Permanent Shelter

#### Type of site

□ Temporary site

☐ Relocation site, Resettlement sites

☑ Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Construction with hired labour (skilled and unskilled). The construction team consisted of four craftsmen: two bricklayers and two carpenters, all hired to ensure the quality of the work. The beneficiaries of the project also took an active part, acting as helpers and contributing to the execution of the tasks.

#### Community Engagement/ Participation

The houses were built/assembled with local labour and with the participation of the beneficiaries, who acted as assistants and were responsible for filling the walls with stones before the final finish.

#### **Environmental Consideration**

Low environmental impact - usage of local material from certified sources

#### **Cultural Practices (Sustainability)**

Use of traditional (mixed) techniquesLocal and conventional materials: Use materials that are abundant in the region and mix them with conventional materials; Promoting the local economy: Favouring the purchase of materials and hiring local labour.

#### **Other Information**

Beneficiaries were involved in the annexes project as helpers. Beneficiaries with vulnerable physical conditions were supported by the artisans.













| Province(s):<br>Cabo Delgado |  |  |
|------------------------------|--|--|
| District(s):<br>Pemba        |  |  |

**TECHNICAL DESCRIPTION** 

Average Shelter life span

# Context/Trigger of response ☑ Conflict ☐ Cyclone ☐ Floods Setting □ Rural ☑ Urban

| Coord | dinating Humanitarian Shelter and Settlem                                                                                 |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| ponse | Shelter category  ☐ Emergency Shelter ☐ Transitional Shelter ☐ Permanent Shelter                                          |  |  |
|       | Type of site  ☐ Temporary site ☐ Relocation site, Resettlement sites ☑ Host areas/affected areas ☐ Return/origin location |  |  |
| emerg | ges durable housing solution compared to gency shelter and culturally adapted                                             |  |  |

| -                   |  |
|---------------------|--|
| 2015                |  |
|                     |  |
| 1                   |  |
| 13 6                |  |
| -                   |  |
| CARL ST.            |  |
| THE RESERVE         |  |
| 77.0                |  |
| SEPARATE PR         |  |
| Section 2           |  |
| THE PERSON NAMED IN |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |

# Shelter set-up time ☐ 1-2 days ☐ 3-5 days □ >5 days

15.5 sqm (m<sup>2</sup>)

☐ 1-3 months

☐ 3-6 months

☐ 1-2 years

#### **Materials** Roofing: corrugated galvanized iron (CGI) Walls: Pau a Pique (bamboo, timber, rocks, mud-cement plastering, etc.) **Floors**: simple concrete with burnt

#### DRR/Resilience techniques used Roof connections, wall bracings, strong foundations, cement skirting board, wood treatment, etc.

# Workforce required for set up 4 skilled **Shelter area Shelter dimensions**

cement finish

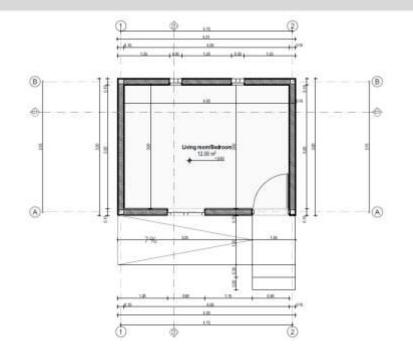
| Shelter habitability  |      |
|-----------------------|------|
| 3.8m per person       |      |
| suitable for 4 occupa | ants |

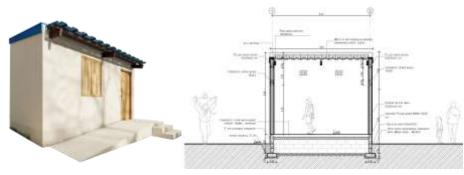
| $\Box$ | More durable housing solution compared to      |
|--------|------------------------------------------------|
|        | emergency shelter                              |
|        | Local and culturally adapted                   |
|        | Shelter can be upgraded and expanded           |
|        | Improves overall well-being and promotes long- |
|        | term recovery and stability                    |
|        |                                                |

| Cł     | nallenges/Disadvantages                            |
|--------|----------------------------------------------------|
|        | Cost may be high for the most vulnerable           |
|        | communities.                                       |
|        | Requires plastering to protect the walls from rain |
|        | this increases the cost.                           |
| $\Box$ | The total area of the house and hadrooms is amo    |

| ] | The total area of the house and bedrooms is small |
|---|---------------------------------------------------|
|   | for the average mozambican family.                |

#### **Shelter estimated cost** Material cost: USD 1,750\* Labour cost: USD 169\*


\*not including logistics






6.35m X 3.2m







Province(s):

Sofala

District(s): Dondo

Context/Trigger of response

☐ Conflict

☑ Cyclone ☐ Floods

Setting

☑ Rural

☑ Urban

**Shelter category** 

☐ Emergency Shelter ☐ Transitional Shelter

✓ Permanent Shelter

Type of site

☐ Temporary site

☐ Relocation site, Resettlement sites

☑ Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

The buildings are built using conventional materials and are carried out by a group of artisans (local labour), with 2 bricklayers, 1 carpenter and 1 helper needed to build a house.

However, QA/QC quality control is carried out by the site managers and supervisors. In order to guarantee greater flexibility in the construction process, the project has a production workshop where prefabricated materials are produced to measure, such as: Construction site materials, formwork, pillar and beam reinforcements, roof structures and painted doors and windows.

#### **Community Engagement/ Participation**

The communities are directly involved in the project, firstly as beneficiaries and secondly as artisans (executors of the houses). But for this project, we are counting on the support of the community in the process quickly locating beneficiaries' houses, in the process of signing tripartite agreements for the execution of the houses, and in the process of controlling the material, through the community policing group.

#### **Environmental Consideration**

All environmental issues that respond to the challenges of the millennium are taken into account, in accordance with EB policies.

#### **Cultural Practices** (Sustainability)

Nothing specific to report. But all the cultural practices of each of the regions covered by the project are respected.




















| Province(s):<br>Sofala |  |  |
|------------------------|--|--|
| District(s):<br>Dondo  |  |  |

#### Context/Trigger of response ☐ Conflict ☑ Cyclone ☐ Floods Setting ☑ Rural ☑ Urban



#### TECHNICAL DESCRIPTION

#### Average Shelter life span **Materials** ☐ 1-3 months Roofing: IBR Sheet Metal 686, 4mm ☐ 3-6 months thick Walls: Concrete block masonry ☐ 1-2 years

400x200x150 mm thick + 0.0250mm of render on each side of the wall. Floors: Simple C25/30 concrete finished with trowel-fired screed

# DRR/Resilience techniques used

Roof connections, wall bracings, strong foundations, cement skirting board, wood treatment, etc.

#### **Advantages**

More durable housing solution compared to emergency shelterLocal and culturally adaptedShelter upgraded be can and expandedImproves overall well-being and promotes long-term recovery and stability

#### **Challenges/Disadvantages**

Logistical chain of the project; permanent training of artisans

#### Workforce required for set up

1 skilled 4 unskilled

Shelter set-up time

☐ 1-2 days

☐ 3-5 days

□ >5 days

**Shelter dimensions** Shelter area 12 sqm (m<sup>2</sup>) 3m X 4m

Shelter habitability 3m per person suitable for 4 occupants

#### **Shelter estimated cost**

Material cost: USD 3.200\* Labour cost: USD 355.73











# **UNHCR SHELTER STRATEGY**









#### Province(s):

Cabo Delgado

#### District(s):

Chiure, Metuge, Montepuez and Mueda

#### **Shelter category** Context/Trigger of response

- ☑ Emergency Shelter
- ☑ Transitional Shelter ☐ Permanent Shelter
- Type of site
- □ Temporary site
- ☑ Emergency Shelter
- ☑ Relocation site. Resettlement sites
- ☑ Host areas/affected areas
- ☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

The shelter response provided by UNHCR Sub-Office in Cabo Delgado province is critical to address the urgent needs of IDPs by providing them with life-saving shelters and core-relief items/NFI assistance. The transitional shelters are tailord to the household size. vulnerability level, and displacement phase, utilizing locally sourced materials according to the context. From 2021 until 2023 Shelter and NFI activities have been implemented through. partnerships agreements with International NGOs to respond to the protracted crisis. In 2023 and 2024, UNHCR scaled up the

localization strategy and capacity

development of local entities, with

formalization of partnerships with SDPI in

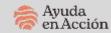
#### **Community Engagement/ Participation**

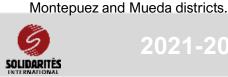
The beneficiaries participate in all the construction process which foster a sense of ownership and responsibility, leading to better maintenance and longevity of the shelters. This includes:

- · Open communication channels for dialogue.
- · Meetings within the community to address shelter and other issues.
- CFM Complaint and feedback mechanisms system within the sites. Advocate for Community needs.
- · Measuring impact and outcomes.

#### **Cultural Practices** (Sustainability)

The emergency shelters built with familiar materials and techniques are more likely to be culturally accepted integrated into the community's way of life.


#### **Other Information**


We encourage the participation of women in all construction activities and provide equal training for both men and women on Build Back Safer techniques adapted to the construction of Emergency provide PSEA, shelters and mandatory which is а requirement program for involvement.













# **EARLY RECOVERY - SHELTER ROOF UPGRADE**













# Province(s):

Cabo Delgado

#### District(s): Montepuez

#### Context/Trigger of response

- ☑ Conflict
- ☐ Cyclone☐ Floods

#### Setting

- ☐ Rural
- ☑ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- ☑ Transitional Shelter☑ Permanent House
- Type of site
- ☐ Temporary site
- ☐ Relocation site, Resettlement sites
- ☑ Host areas/affected areas
- ☐ Return/origin location

#### TECHNICAL DESCRIPTION

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 1-2 years

#### Shelter set-up time

- ☐ 1-2 davs
- □ >5 days
- □ >15 days

# Workforce required for set up

1 skilled 2 unskilled

#### Materials

Local wooden poles, bamboo poles, mud daub wall for the superstructure, CGI (corrugated galvanized iron) sheet on local wooden truss roof.

#### Shelter area

2023-2024

**Type 1** - 18sqm (6mx3m) for small households with 5 and below family members.

**Type 2** – 30sqm (5mx6m) for household size above.

Reinforcement of the superstructure and upgrading of the roof structure from grass thatch to CGI sheets in Nicuapa host village, Montepuez district. Constructed with partners AVSI (Association of Volunteers in International Service) and SDPI from 2023 to 2024.

#### **DRR/Resilience techniques used**

Strong roof connections, wood treatment, piles in depth of 50cm, etc.

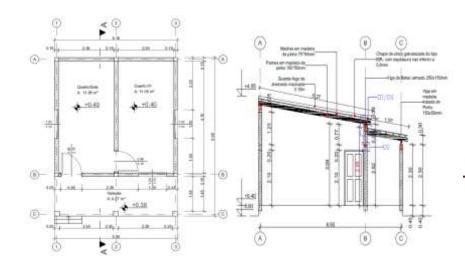
#### **Advantages**

- ☐ Long-term solution, ensuring localization strategy and capacity development.
- ☐ Community participation.
- ☐ Properly repaired roofs improve insulation, leading to better energy efficiency.

#### **Challenges/Disadvantages**

- ☐ Shelter sizes aren't consistent, which may vary the materials quantities.
- ☐ Beneficiaries' vulnerability during the building process.

Type 2
Total cost: 600\$


Material cost: 536.71\$ Labour cost: 63.29\$













Province(s): SOFALA

District(s):

DONDO DISTRICT

#### Context/Trigger of response

☐ Conflict

□ x Cyclone

☐ Floods

#### Setting

□ x Rural□ Urban

#### Type of site

☐ Temporary site

**Shelter category** 

☐ Emergency Shelter

□ Transitional Shelter

□ x Permanent Shelter

☐ x Relocation site, Resettlement sites

 $\hfill\square$  Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

The implementation modality for the construction of resilient houses is based on selfconstruction approach implemented by a local NGO with effective participation of beneficiaries. which local received training in resilient construction and subsequent on-the-job training is done throughout project the implementation.

# Community Engagement/ Participation

The beneficiaries themselves participate in the selection process of the most vulnerable beneficiaries and receive training as skill labors to support on the building process of the houses.

#### **Environmental Consideration**

Use local materials and ensure that the source of the materials are legal according to Mozambican laws and are approved by the the supervision body as well as the use of individual protection equipment for the labors.

#### **Cultural Practices (Sustainability)**

Collaboration with the host community and local government to incorporate their cultural values and construction preferences into the house designs. By aligning interventions with traditional practices and applying Build Back Better techniques, we ensure knowledge transfer, community acceptance, and the sustainability of the constructions.









|                                                              | C                                                                                        | oordinating Humanitarian Shelter and Settleme                                                                                                                                                       |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Province(s):<br>SOFALA<br>District(s):                       | Context/Trigger of respons  ☐ Conflict ☐ Cyclone x ☐ Floods                              | Shelter category  ☐ Emergency Shelter ☐ Transitional Shelter ☐ Permanent Shelter x                                                                                                                  |
| DONDO  FECHNICAL DESCRIPTION                                 | Setting □ Rural x □ Urban                                                                | Type of site  ☐ Temporary site ☐ Relocation site, Resettlement sites x ☐ Host areas/affected areas ☐ Return/origin location                                                                         |
| Average Shelter life span                                    | Materials                                                                                | Advantages                                                                                                                                                                                          |
| ☐ 1-3 months<br>☐ 3-6 months<br>☐ 1-2 years<br>☐ 2-5 years x | Roofing: Corrugated galvanized iron sheet Walls: Cement blocks Floors: Concrete pavement | <ul> <li>□ Engage local beneficiaries in the construction process to build local capacity and transfer resilient construction practices within the community</li> <li>□ Evolutive houses</li> </ul> |
| Shelter set-up time                                          |                                                                                          | ☐ Promotion of local and sustainable materials                                                                                                                                                      |
| □ 1-2 days<br>□ 3-5 days                                     | DRR/Resilience techniques used Resilience techniques, such as wall                       | Challenges/Disadvantages                                                                                                                                                                            |
| □ >5 days                                                    | weaving, enhance strength, while                                                         | ☐ Misuse of money by NGO/CSOs                                                                                                                                                                       |
| □ >15 davs x                                                 | robust foundations, roof                                                                 | ☐ Inadequate capacity of IPs, engineers,                                                                                                                                                            |

# Workforce required for set up onstruction trainings for local

2 skilled 3 unskilled beneficiaries

**Shelter area Shelter dimensions** 34,25 sqm (m<sup>2</sup>)

5,15m X 6,65m

**Shelter habitability** 6m per person

connections, wood treatment and

durability including resilient

ensure overall structural stability and

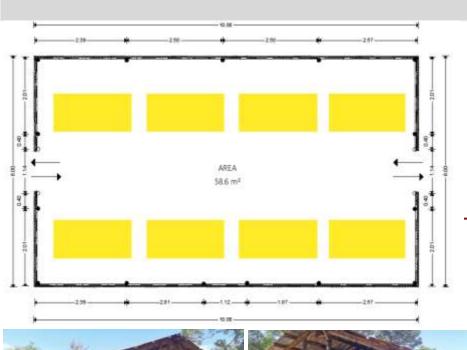
suitable for 5 occupants

**Shelter estimated cost** 

consultant company

owner of the houses

☐ Quality of local materials


Material cost: USD 7,000 Labour cost: USD 3,000



☐ Assure that beneficiaries will be the actual

# [COMMUNITY MARKET/ INFRASTRUCTURE]





#### Province(s):

Cabo Delgado

#### District(s):

Chiúre - Mahipa

#### Context/Trigger of response

- ☑ Conflict
- ☐ Cyclone
- ☐ Floods

#### Setting

- ☑ Rural
- ☐ Urban

#### **Market category**

- ☐ Emergency Market
- ☐ Transitional Market☑ Permanent Market

#### Type of site

- ☐ Temporary site
- ☐ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☑ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

The community will receive all the materials needed to build the community market: rope, wire, nails, zinc sheets, beams, burnt oil/cashew oil, cement, sand and gravel.

A construction committee was formed, made up of 7 members (specialized and non-specialised members), responsible for building the wall structure with bamboo and eucalyptus poles, building the roof structure and paving the market.

The construction members are members of the community.

#### Community Engagement/ Participation

CARE trained and equipped a group of local volunteer carpenters, later the group would carry out roofing work on the shelters through a selection of the most outstanding in the group, as this was specialized work. We will also use a specific group of masters (bricklayers) to make the flooring of the market - local masters.

#### **Environmental Consideration**

Building community markets with mixed materials offers an opportunity to balance sustainability, durability and efficiency. The life cycle of materials used incorporates the practice of resilient construction and sustainable maintenance to minimize negative environmental impacts.

#### **Cultural Practices (Sustainability)**

- 0.34 m² (m²) per seller suitable for 16 permanent and 8 occasional occupants;
- Every Saturday, the market welcomes traders from various points to participate in the fair;
- The market was developed to also accommodate people with special needs, at both entrances it has ramps.

#### **Other Information**

- Material cost: USD 4,538.41\*
- Labour cost: USD 633.992
- Workforce required for set up: 3 skilled 5 unskilled;
- Market area: 10mx6m 60 sqm (m²)







#### PERMANENT HOUSING









#### Province(s):

Cabo Delgado, Nampula, Zambezia, Manica, Sofala, Inhambane and Gaza

#### District(s):

Pemba, Ancuabe, Angoche, Mongicual, Ilha de Moçambique, Quelimane, Manica, Dondo, Nhamatanda, Buzi, Vilanculos and Chokwe.

#### Context/Trigger of response

- ☑ Conflict
- ☑ Cyclone

#### Setting

- ☑ Rural
- ☑ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- ✓ Permanent House

#### Type of site

- ☐ Temporary site
- ☑ Relocation site, Resettlement sites
- ✓ Host areas/affected areas
- ☑ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

UN-Habitat's response to resilient housing in Mozambique is based on a community and government-led approach using participatory methods to design, plan, prioritize and build resilient housing and shelter models. technicians. local Government artisans (men and women), youth and women's associations are trained in resilient construction throughout the project implementation. Following the three (3) resilience principles (cultural appropriation, local technologies and climate adaptation), the models are diversified depending the location and building materials is collected locally or brought into the community, following strict environmental and resilience standards.

#### **Community Engagement/ Participation**

The community is involved from the start of the process, in the initial assessment, design of the model, construction and supervision. Depending on the physical condition and age of the beneficiaries, they can take an active part in the construction and benefit from training to help them maintain the houses.

#### **Environmental Consideration**

To ensure environmental sustainability UN-Habitat promotes the following principles: 1. prioritize the practice of good execution and application of materials, 2. implement site mapping and risk assessment, 3. implement diversification of models (conventional, mixed and/or local) and 4. encourage the use of certified materials by suppliers.

#### **Cultural Practices (Sustainability)**

An initial participatory assessment of the local context is essential to ensure cultural appropriateness, ownership of the model and replicability. In line with this, UN-Habitat argues that local technologies should be studied in order to improve them, as replicability and ownership are highly dependent on local culture.

#### **Other Information**

The people-centred process is a fundamental requirement of UN-Habitat interventions, as it ensures the creation of capacity at the community level to prepare for, respond to and adapt to future crises. The participation of women and young people is encouraged, and it is essential that cross-cutting issues of PSEA and GBV are implemented throughout the process.

**Mozambique Shelter Cluster** 





| <b>Province</b> | s | ١ |
|-----------------|---|---|
|                 | _ | , |

Sofala

#### District(s):

Dondo (Mandruzi), Nhamatanda (Metuchira)

#### **Context/Trigger of response**

- ☑ Conflict
- ☐ Cyclone
- ☐ Floods

#### Setting

- ☑ Rural
- □ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- ☐ Transitional Shelter☑ Permanent Shelter

#### Type of site

- ☐ Temporary site
- ☑ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

The implementation of these models in IDAI's post-cyclone reconstruction uses a participatory and community-centered methodology. The model is new to the community therefore it has been implemented in Vilanculos and Xai-Xai and is being identified as a suitable model for cyclone affected areas, with good acceptance, has been proposed as a pilot for dissemination in the areas of Beira, Dondo, Nhamatanda and Buzi.

This resilient housing solution can be used as a durable solution in local integration, return or resettlement situations in urban, peri-urban or rural context.

#### Community Engagement/ Participation

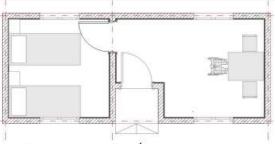
This resilient housing model, implemented in Mandruzi (Dondo), and Metuchira (Nhamatanda), endorsed by local government and the community was trained to built.

#### **Environmental Consideration**

The construction of these houses involves the use of pressed bricks, for which the soil must have specific characteristics, so this implementation may involve excavations that may affect the local environment. Excavation is recommended in accordance with local environmental standards and with a mitigation plan.

#### **Cultural Practices (Sustainability)**

Use of improved conventional and nonconventional construction techniques, obtaining of materials from local suppliers and use of local labour as a way of boosting the local economy and promoting community resilience.


#### **Other Information**

The artisans were selected by local leaders and were also trained in resilient construction. In addition to construction, the training covered topics such as the sustainable use of local materials, the production of cement blocks, and the selection and use of wood in resilient roofs.



Model T2







# Province(s):

Sofala

#### District(s):

Dondo (Mandruzi), Nhamatanda (Metuchira)

#### Context/Trigger of response

- ☐ Conflict
- ☑ Cyclone
- ☐ Floods

#### Setting

- ☑ Rural
- □ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- ☐ Transitional Shelter
- ☑ Permanent Shelter

#### Type of site

- ☐ Temporary site
- ☑ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☐ Return/origin location

# Model T1





#### TECHNICAL DESCRIPTION

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 1-2 years

#### Shelter set-up time

- ☐ 1-2 days
- ☐ 3-5 days
- □ >5 days

#### **Materials**

Roofing: Ferrocement vault.

wall with Walls: conventional stabilized blocks and concrete beams and pillars.

**Floors**: simple concrete with burnt cement finish

#### **DRR/Resilience techniques used**

Ferrocement vault, wall and roof reinforced connections, strong foundations etc.

#### **Advantages**

- ☑ More durable housing solution compared to emergency shelter
- ☑ Local and culturally adapted
- ☐ Shelter can be upgraded and expanded
- ☑ Improves overall well-being and promotes longterm recovery and stability

#### Challenges/Disadvantages

- ☑ Cost may be high for the most vulnerable communities.
- ☐ Requires plastering to protect the walls from rain, this increases the cost.
- ☐ The total area of the house and bedrooms is small for the average Mozambican family.

#### **Shelter estimated cost**

Material cost: USD 8,400 Labour cost: USD 2.400\*

> \*not including logistics (10% = USD 1,200) Implemented by Contractors

# Model T2

#### Workforce required for set up

4 skilled artisans 5 servants

#### Shelter area

T1: 21 sqm (m<sup>2</sup>) T2: 30 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

3m X 7m 3m X 10m

#### **Shelter habitability**

3.5m<sup>2</sup> per person suitable for 6-8 occupants



**Mozambique Shelter Cluster** 







| Province  | C  | ١. |
|-----------|----|----|
| Province( | Э, |    |

Sofala

#### District(s):

Dondo (Mandruzi) and Buzi (Guara-Guara)

#### Context/Trigger of response

☑ Conflict

☐ Cyclone

☐ Floods

#### Setting

☑ Rural

□ Urban

#### **Shelter category**

☐ Emergency Shelter

☐ Transitional Shelter☑ Permanent Shelter

#### Type of site

☐ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

This model was designed with the involvement of government technicians and community members through participatory housing design workshop.

To speed up assistance and implementation, these models were implemented using a hybrid approach, with contractors overseeing construction and stabilized blocks supplied by local associations established, trained and empowered by the project.

This resilient housing solution can be used as a durable solution in local integration, return or resettlement situations in urban, peri-urban or rural context.

#### Community Engagement/ Participation

This resilient housing model, implemented in Mandruzi (Dondo), and Guara-Guara (Buzi), was designed by the government technicians and community members.

#### **Environmental Consideration**

The construction of these houses involves the use of pressed bricks, for which the soil must have specific characteristics, so this implementation may involve excavations that may affect the local environment. Excavation is recommended in accordance with local environmental standards and with a mitigation plan.

#### **Cultural Practices (Sustainability)**

Use of improved conventional and nonconventional construction techniques, obtaining of materials from local suppliers and use of local labour as a way of boosting the local economy and promoting community resilience.

#### **Other Information**

The artisans were selected by local leaders and were also trained in resilient construction. In addition to construction, the training covered topics such as the sustainable use of local materials, the production of cement blocks, and the selection and use of wood in resilient roofs.









# Province(s):

Sofala

#### District(s):

Dondo (Mandruzi), Buzi (Guara-Guara)

#### Context/Trigger of response

☐ Conflict

☑ Cyclone

☐ Floods

#### Setting

☑ Rural

□ Urban

#### **Shelter category**

☐ Emergency Shelter☐ Transitional Shelter

✓ Permanent Shelter

#### Type of site

☐ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

☐ 1-3 months

☐ 3-6 months

☐ 1-2 years

#### **Shelter set-up time**

☐ 1-2 days

☐ 3-5 days

□ >5 days

#### **Materials**

**Roofing**: Galvanized IBR Roof Sheeting, Hurricane clips, treated timber, umbrella nails.

**Walls**: conventional wall with stabilized blocks and concrete beams and pillars.

**Floors**: simple concrete with burnt cement finish

#### DRR/Resilience techniques used

Roof connections, wall and roof reinforced connections, strong foundations, 2 slope Roof, wood treatment, etc.

#### **Advantages**

☑ More durable housing solution compared to emergency shelter

☑ Local and culturally adapted

☐ Shelter can be upgraded and expanded

☑ Improves overall well-being and promotes long-term recovery and stability

#### **Challenges/Disadvantages**

☑ Cost may be high for the most vulnerable communities.

☐ Requires plastering to protect the walls from rain, this increases the cost.

☐ The total area of the house and bedrooms is small for the average Mozambican family.

#### **Shelter estimated cost**

Material cost: USD 8,400 Labour cost: USD 2,400\*

> \*not including logistics (10% = USD 1,200) Implemented by Contractors

# Vaccoria 4-0.34 Vaccoria 4-0.39 Vaccoria 4-0.39



#### Workforce required for set up

4 skilled artisans 5 servants

#### Shelter area

T1: 36 sqm (m²) Including verandas

#### **Shelter dimensions**

[2023-2024]

6m X 6m 4.5m<sup>2</sup> p

#### **Shelter habitability**

4.5m<sup>2</sup> per person suitable for 4-8 occupants







| <b>李</b> 斯 | W CANA            |
|------------|-------------------|
|            | No. of the second |
|            |                   |
| FA         |                   |
| Model T3   |                   |

#### Province(s):

Cabo Delgado

#### District(s):

Ancuabe (Marokani)

#### Context/Trigger of response

- ☑ Conflict
- ☐ Cyclone
- ☐ Floods

#### Setting

- ☑ Rural
- □ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- □ Transitional Shelter
- ✓ Permanent Shelter

#### Type of site

- ☐ Temporary site
- ☑ Relocation site, Resettlement sites
- ☐ Host areas/affected areas
- ☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Square, hipped-roof, Swahili-style house model, designed with the involvement of government technicians and built with the active participation of skilled and unskilled community members (women and youth). The construction team consists of two masons, two carpenters and five selected workers, all hired from the community.

The beneficiaries of the houses also participated as helpers and contributed to the process of filling the walls with mud and painting the houses.

This resilient housing solution can be used as a durable solution in local integration, return or resettlement situations.

#### **Community Engagement/ Participation**

This resilient housing model, implemented in Marokani (Ancuabe), was designed by the government technicians through a technical consultations meetings and built using locally available labour and construction material.

#### **Environmental Consideration**

These resilient houses use local forest materials (bamboo and poles) collected by the community in accordance with requirements set by national authorities. The involvement of the community in the construction process ensures long-term durability and sustainability by strengthening their maintenance skills.

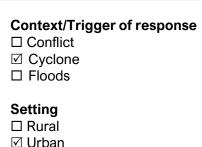
#### **Cultural Practices (Sustainability)**

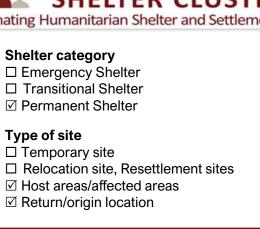
Use of improved conventional and nonconventional construction techniques. obtaining of materials from local suppliers and use of local labour as a way of boosting the local economy and promoting community resilience.

#### Other Information

The artisans were selected by local leaders and were also trained in resilient construction. In addition to construction, the training covered topics such as the sustainable use of local materials, the production of cement blocks, and the selection and use of wood in resilient roofs.




















# TECHNICAL DESCRIPTION

#### Average Shelter life span

- ☐ 1-3 months ☐ 3-6 months
- ☐ 1-2 years

#### Shelter set-up time

- ☐ 1-2 days
- ☐ 3-5 days
- □ >5 days

#### **Materials**

Roofing: Galvanized IBR Roof Sheeting, Hurricane clips, treated timber, umbrella nails.

Walls: #option1: conventional wall with cement block and concrete beams and pillars. #option 2: mixed material wall with local stakes, bamboos, cement plaster

**Floors**: simple concrete with burnt cement finish

#### **DRR/Resilience techniques used**

Roof connections, wall and roof reinforced connections, strong foundations, 4 slope Roof, wood

#### **Advantages**

- ✓ More durable housing solution compared to emergency shelter
- ☑ Local and culturally adapted
- ☐ Shelter can be upgraded and expanded
- ☑ Improves overall well-being and promotes longterm recovery and stability





#### Workforce required for set up

4 skilled artisans 5 servants

#### Shelter area

T2: 36 sqm (m<sup>2</sup>) T3.: 48 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

6m X 6m 8m X 6m

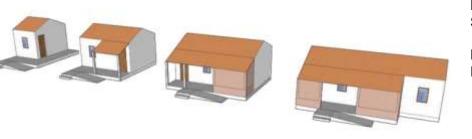
treatment, etc.

# Challenges/Disadvantages

- ☑ Cost may be high for the most vulnerable communities.
- ☐ Requires plastering to protect the walls from rain, this increases the cost.
- ☐ The total area of the house and bedrooms is small for the average Mozambican family.

#### **Shelter estimated cost**

Material cost: T2 USD 2,520\* / T3 USD 3,360\* Labour cost: T2 USD 720\* / T3 USD 960\* \*not including logistics (10% = USD 360 /480)






4.5m<sup>2</sup> per person suitable for 6-10 occupants

**Shelter habitability** 





| <b>Province(s)</b> :<br>Sofala |  |  |
|--------------------------------|--|--|
| <b>District(s)</b> :<br>Dondo  |  |  |

| Context/Trigger of response  ☐ Conflict ☐ Cyclone ☐ Floods | She<br>      |
|------------------------------------------------------------|--------------|
| Setting □ Rural ⊡ Urban                                    | <b>Ty</b> l□ |

| dinating numanitarian Shelter and Settlem                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------|
| Shelter category  ☐ Emergency Shelter ☐ Transitional Shelter ☑ Permanent Shelter                                          |
| Type of site  ☐ Temporary site ☐ Relocation site, Resettlement sites ☑ Host areas/affected areas ☑ Return/origin location |

# Casa de Barho 6mg Sotão Sala 10mg +0.3 Ospirale de Agua VY1000.

#### PROJECT DESCRIPTION

#### Methodology

Conventional urban incremental house model built by hired and trained local craftsmen (skilled and unskilled). The construction team consists of two masons, one carpenter and five selected servants, all hired to ensure the quality of the work.

The beneficiaries of the project also participated actively, acting as helpers and contributing to the construction process and learn resilient building techniques for maintaining the house.

This resilient housing solution can be implemented as a durable solution in urban and peri-urban areas..

# Community Participation

Engagement/

#### **Cultural Practices (Sustainability)**

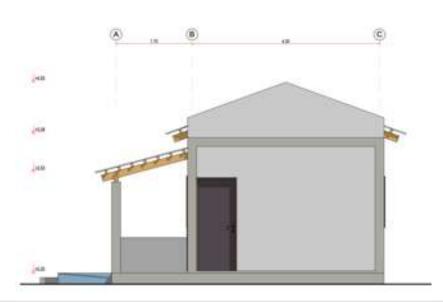
This resilient housing model, implemented in Dondo, was designed by the community through a participatory design workshop and built using locally available labour and with the active participation of the beneficiaries, who acted as servants and sometimes construction supervisors..

#### **Environmental Consideration**

Minimal environmental impact through the use of conventional materials sourced from certified suppliers. Waste from the house destroyed by the cyclone was used to fill the floors of the house.

Use of improved conventional construction techniques, sourcing of materials from local suppliers and use of local labour as a way of boosting the local economy and promoting community resilience.

#### Other Information


The artisans were selected by local leaders and were also trained in resilient construction. In addition to construction, the training covered topics such as the sustainable use of local materials, the production of cement blocks, and the selection and use of wood in resilient roofs.





| <b>Province(s)</b> :<br>Sofala |  |  |
|--------------------------------|--|--|
| <b>District(s)</b> :<br>Dondo  |  |  |

| Coc                                                        | ordinating Humanitarian Shelter and Settler                                                                               |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Context/Trigger of response  ☐ Conflict ☐ Cyclone ☐ Floods | Shelter category  ☐ Emergency Shelter ☐ Transitional Shelter ☑ Permanent Shelter                                          |
| Setting  □ Rural  ☑ Urban                                  | Type of site  ☐ Temporary site ☐ Relocation site, Resettlement sites ☑ Host areas/affected areas ☑ Return/origin location |



#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

- ☐ 1-3 months ☐ 3-6 months
- ☐ 1-2 years

#### Shelter set-up time

- ☐ 1-2 days
- ☐ 3-5 days
- □ >5 days

#### Workforce required for set up

3 skilled artisans 5 servants

#### Shelter area

Core: 21 sqm (m<sup>2</sup>) Exp.: 33,2 sqm (m<sup>2</sup>)

#### **Materials**

Roofing: Galvanized IBR Roof Sheeting, Hurricane clips, treated timber, umbrella nails, Gable beams.

Cement block walls. Walls: reinforced concrete beams and columns, cement mortar plaster.

**Floors**: simple concrete with burnt cement finish

#### **DRR/Resilience techniques used**

Roof connections, wall and roof reinforced connections, strong foundations, Raised floor, wood treatment, etc.

#### **Shelter dimensions Shelter habitability**

4/5.3 m<sup>2</sup> per person suitable for 6-8 occupants

#### **Advantages**

- emergency shelter
- ☑ Local and culturally adapted
- ☑ Shelter can be upgraded and expanded
- ☑ Improves overall well-being and promotes longterm recovery and stability

#### Challenges/Disadvantages

- communities.
- ☐ Requires plastering to protect the walls from rain, this increases the cost.
- ☑ The total area of the house and bedrooms is small for the average Mozambican family.

#### **Shelter estimated cost**

Material cost: USD 3,850\* Labour cost: USD 1.100\*

\*not including logistics (10% = USD 550)



5m X 4.2m

8m X 4.2m







| Province(s | <b>;)</b> : |
|------------|-------------|
|------------|-------------|

Zambezia

District(s):

Quelimane (Icidua)

#### Context/Trigger of response

- ☐ Conflict
- ☑ Cyclone

#### Setting

- □ Rural
- ☑ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- ☐ Transitional Shelter✓ Permanent Shelter
- \_ ...

#### Type of site

- ☐ Temporary site
- ☐ Relocation site, Resettlement sites
- ☑ Host areas/affected areas
- ☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Mixed-material resilient house model, with square shape, hipped-roof designed with the involvement of Municipal technicians and built with the active participation of skilled and unskilled community members (women and youth). The construction team consists of two masons, two carpenters and five selected workers, all hired from the community.

This model was built using coconut wood to make the wall structure and the roof structure, with the involvement of a local carpentry workshop that produces coconut wood.

This resilient housing solution can be used as a durable solution in urban and peri-urban areas.

#### Community Engagement/ Participation

This resilient housing model, implemented in Icidua (Quelimane), was replicated by the community members and it helped to enhance community resilience. This model resisted to cyclone Freddy.

#### **Environmental Consideration**

These resilient houses use local coconut wood provided by local enterprise.

The involvement of the community in the construction process ensures longterm durability and sustainability by strengthening their maintenance skills.

#### **Cultural Practices (Sustainability)**

Use of improved conventional and nonconventional construction techniques, obtaining of materials from local suppliers and use of local labour as a way of boosting the local economy and promoting community resilience.

#### **Other Information**

The artisans were selected by local leaders and were also trained in resilient construction. In addition to construction, the training covered topics such as the sustainable use of local materials, the production of cement blocks, and the selection and use of wood in resilient roofs.



**Mozambique Shelter Cluster** 





#### Province(s):

Zambezia

#### District(s):

Quelimane (Icidua)

#### Context/Trigger of response

- ☐ Conflict
- ☑ Cyclone
- ☐ Floods

#### Setting

- □ Rural
- ☑ Urban

#### **Shelter category**

- ☐ Emergency Shelter
- □ Transitional Shelter
- ✓ Permanent Shelter

#### Type of site

- ☐ Temporary site
- ☐ Relocation site, Resettlement sites
- ☑ Host areas/affected areas
- ☑ Return/origin location



#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 1-2 years

#### Shelter set-up time

- ☐ 1-2 days
- ☐ 3-5 days
- □ >5 davs

#### **Materials**

Roofing: Galvanized IBR Roof Sheeting, Hurricane clips, treated timber, umbrella nails.

Walls: Mixed material wall using coconut wood structure, bamboo, mud and cement plastering.

**Floors**: simple concrete with burnt cement finish

#### **DRR/Resilience techniques used**

Roof connections, wall and roof reinforced connections, strong foundations, 4 slope Roof, wood treatment, etc.

#### **Advantages**

- ✓ More durable housing solution compared to emergency shelter
- ☑ Local and culturally adapted
- ☐ Shelter can be upgraded and expanded
- ☑ Improves overall well-being and promotes longterm recovery and stability

#### Challenges/Disadvantages

- ☑ Cost may be high for the most vulnerable communities.
- ☐ Requires plastering to protect the walls from rain, this increases the cost.
- ☐ The total area of the house and bedrooms is small for the average Mozambican family.

#### **Shelter estimated cost**

Material cost: T1 USD 2,240\* / T2 USD 4,550\* Labour cost: T1 USD 640\* / T2 USD 980\* \*not including logistics (10% = USD 320 /650)

#### Workforce required for set up

4 skilled artisans 5 servants

#### Shelter area

T2: 24 sqm (m<sup>2</sup>) T3.: 36 sqm (m<sup>2</sup>)

#### **Shelter dimensions**

6m X 4m 6m X 6m

#### **Shelter habitability**

3.65m<sup>2</sup> per person suitable for 5-8 occupants









| Province(s): |
|--------------|
| Cabo Delgado |

District(s): Pemba (Chuiba)

#### Context/Trigger of response

☐ Conflict☑ Cyclone

#### Setting

□ Rural☑ Urban

#### **Shelter category**

☐ Emergency Shelter☐ Transitional Shelter

☑ Permanent Shelter

#### Type of site

☐ Temporary site

☐ Relocation site, Resettlement sites

☑ Host areas/affected areas

☐ Return/origin location

#### **PROJECT DESCRIPTION**

#### Methodology

These resilient housing models in mixed and conventional materials were designed with the involvement of Municipal technicians and built with the active participation of skilled and unskilled artisans. The construction team consists of two masons, two carpenters and six selected workers, all hired from the community.

This model was built using local stakes and woods to make the wall structure and the roof structure. And the cement blocks for the walls were produced by the community.

This resilient housing solution can be used in urban and peri-urban areas as a urban durable solution.

#### Community Engagement/ Participation

This resilient housing model, implemented in Chuiba (Pemba), was replicated by the community members and it helped to enhance community resilience. This model resisted to secondary effects of cyclone Kenneth.

#### **Environmental Consideration**

Minimal environmental impact using conventional materials sourced from certified suppliers.

The involvement of the community in the construction process ensures longterm durability and sustainability by strengthening their maintenance skills.

#### **Cultural Practices (Sustainability)**

Use of improved conventional and nonconventional construction techniques, obtaining of materials from local suppliers and use of local labour as a way of boosting the local economy and promoting community resilience.

#### **Other Information**

The artisans were selected by local leaders and were also trained in resilient construction. In addition to construction, the training covered topics such as the sustainable use of local materials, the production of cement blocks, and the selection and use of wood in resilient roofs.











District(s): Pemba (Chuiba)

#### Context/Trigger of response

☐ Conflict

☑ Cyclone ☐ Floods

#### Setting

□ Rural

☑ Urban

#### **Shelter category**

☐ Emergency Shelter □ Transitional Shelter

☑ Permanent Shelter

#### Type of site

☐ Temporary site

☐ Relocation site, Resettlement sites

☑ Host areas/affected areas

☑ Return/origin location

☑ More durable housing solution compared to

☑ Improves overall well-being and promotes long-

☐ Shelter can be upgraded and expanded





#### TECHNICAL DESCRIPTION

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 1-2 years

#### Shelter set-up time

- ☐ 1-2 days
- ☐ 3-5 days
- □ >5 days

#### **Materials**

Roofing: Galvanized IBR Roof Sheeting, Hurricane clips, treated timber, umbrella nails.

Walls: #Option 1:Mixed material wall using coconut wood structure, bamboo, mud and cement plastering. #Option 2: Cement block, Concrete beams and pillars etc

**Floors**: simple concrete with burnt cement finish

#### Challenges/Disadvantages

term recovery and stability

☑ Local and culturally adapted

**Advantages** 

emergency shelter

- communities.
- ☐ Requires plastering to protect the walls from rain, this increases the cost.
- ☐ The total area of the house and bedrooms is small for the average Mozambican family.

# **DRR/Resilience techniques used**

Roof connections, wall and roof reinforced connections, strong foundations, 4 slope roof and 2 slope roof, wood treatment, etc.

#### **Shelter habitability**

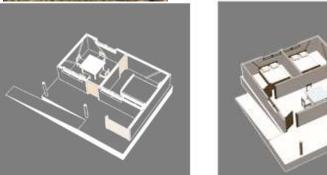
3.65m<sup>2</sup> per person suitable for 5-8 occupants

# **Shelter estimated cost**

Material cost: T1 USD 2,440\* / T2 USD 4,660\* Labour cost: T1 USD 840\* / T2 USD 1010\* \*not including logistics (10% = USD 360 /690)



#### Workforce required for set up


4 skilled artisans 5 servants

#### Shelter area **Shelter dimensions**

T1: 24 sqm (m<sup>2</sup>) 6m X 4m T2.: 36 sqm (m<sup>2</sup>) 6m X 6m

# [2017-2019]









# Province(s):

Nampula

District(s):

Ilha de Moçambique

#### Context/Trigger of response

- ☐ Conflict
- ☑ Cyclone
- ☐ Floods

#### Setting

□ Rural☑ Urban

- **Shelter category**
- ☐ Emergency Shelter☐ Transitional Shelter
- ☑ Permanent Shelter

#### Type of site

- ☐ Temporary site
- ☐ Relocation site, Resettlement sites
- ☑ Host areas/affected areas
- ☐ Return/origin location



#### PROJECT DESCRIPTION

#### Methodology

These resilient housing models in mixed and conventional materials were designed with the involvement of Municipal technicians and built with the active participation of skilled and unskilled artisans. The construction team consists of two masons, two carpenters and six selected workers, all hired from the community.

This model was built using local stakes and woods to make the wall structure and the roof structure. And the cement blocks for the walls were produced by the community.

This resilient housing solution can be used in urban and peri-urban areas as an urban durable solution.

#### Community Engagement/ Participation

This resilient housing model, implemented in Macicate (Ilha de Moçambique) resisted to effects of the cyclones Eloise, Ana and Gombe.

The technics were replicated in the neighborhood by the community members.

#### **Environmental Consideration**

Minimal environmental impact using conventional materials sourced from certified suppliers.

The involvement of the community in the construction process ensures longterm durability and sustainability by strengthening their maintenance skills.

#### **Cultural Practices (Sustainability)**

Use of improved conventional and nonconventional construction techniques, obtaining of materials from local suppliers and use of local labour as a way of boosting the local economy and promoting community resilience.

#### **Other Information**

The artisans were selected by local leaders and were also trained in resilient construction. In addition to construction, the training covered topics such as the sustainable use of local materials, the production of cement blocks, and the selection and use of wood in resilient roofs.







Province(s): Cabo Delgado

District(s): Pemba (Chuiba)

#### **Context/Trigger of response**

☐ Conflict☑ Cyclone

□ Floods

#### Setting

□ Rural

☑ Urban

#### **Shelter category**

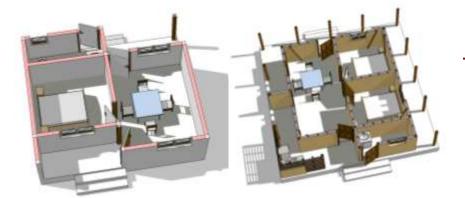
☐ Emergency Shelter☐ Transitional Shelter

☑ Permanent Shelter

#### Type of site

☐ Temporary site

☐ Relocation site, Resettlement sites


☑ Host areas/affected areas

☑ Return/origin location

✓ More durable housing solution compared to

☑ Improves overall well-being and promotes long-

☐ Shelter can be upgraded and expanded



#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

☐ 1-3 months

 $\ \square$  3-6 months

☐ 1-2 years

#### **Shelter set-up time**

☐ 1-2 days

☐ 3-5 days

□ >5 days

#### **Materials**

**Roofing:** Galvanized IBR Roof Sheeting, Hurricane clips, treated timber, umbrella nails.

Walls: #Option 1:Mixed material wall using coconut wood structure, bamboo, mud and cement plastering. #Option 2: Cement block, Concrete beams and pillars etc

**Floors**: simple concrete with burnt cement finish

#### **Challenges/Disadvantages**

term recovery and stability

☑ Local and culturally adapted

**Advantages** 

emergency shelter

☑ Cost may be high for the most vulnerable communities.

☐ Requires plastering to protect the walls from rain, this increases the cost.

☐ The total area of the house and bedrooms is small for the average Mozambican family.

#### DRR/Resilience techniques used

Roof connections, wall and roof reinforced connections, strong foundations, 4 slope roof and 2 slope roof, wood treatment, etc.

#### Shelter habitability

3.65m<sup>2</sup> per person suitable for 5-8 occupants

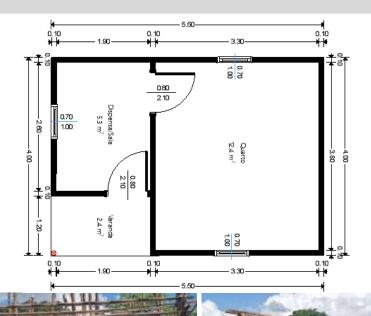
#### **Shelter estimated cost**

Material cost: T1 USD 2,590\* / T2 USD 4,340\* Labour cost: T1 USD 740\* / T2 USD 1240\* \*not including logistics (10% = USD 370 /600)



# Workforce required for set up

4 skilled artisans 5 servants


#### Shelter area Shelter dimensions

T1: 24 sqm (m<sup>2</sup>) 6m X 4m T2.: 36 sqm (m<sup>2</sup>) 6m X 6m

#### Shelter nabitability







Province(s):

Cabo Delgado

☑ Conflict☐ Cyclone☐ Floods

Context/Trigger of response

☐ Emergency Shelter☐ Transitional Shelter☑ Permanent Shelter

**Shelter category** 

**District(s)**: Chiúre - Nacivare

Setting

☑ Rural
☐ Urban

Type of site

☐ Temporary site☑ Relocation site, Resettlement sites

☐ Host areas/affected areas☐ Return/origin location

#### **TECHNICAL DESCRIPTION**

#### Average Shelter life span

- ☐ 1-3 months
- ☐ 3-6 months
- ☐ 1-2 years

#### **Materials**

**Roofing**: Zinc Sheets, wood beans and nails.

Walls: Pau a Pique (bamboo, stick timer, mud plastering, nails off different sizes, recycled rubber rope and wire)

Floors: soil

# □ Local and culturally adapted□ Shelter can be upgraded and expanded, adapting

Shelter can be upgraded and expanded, adaptin the pantry/kitchen

Challenges/Disadvantages

emergency shelter

**Advantages** 

☐ May be more expensive than an emergency shelter

☐ More durable housing solution compared to

□ Takes longer to build than an emergency shelter□ Delay in cleaning the walls due to lack of water

☐ Lack of construction material locally

#### Shelter set-up time

- ☐ 1-2 days
- □ >5 days
- □ >15 days

#### **DRR/Resilience techniques used**

Roof connections, wall bracings, strong foundations, wood treatment and pavement preparation





#### Workforce required for set up

3 skilled 3 unskilled

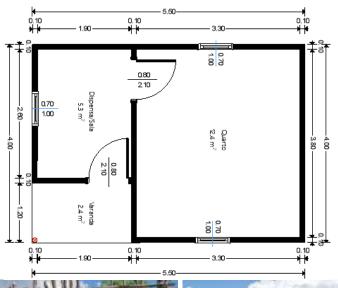
Shelter area

22 sqm (m<sup>2</sup>)

**Shelter dimensions** 

5.5m X 4m

**Shelter habitability** 


4.8m per person suitable for 3 occupants

#### **Shelter estimated cost**

Material cost: USD 807,95\* Labour cost: USD 33,20













#### Province(s):

Cabo Delgado

#### District(s):

Chiúre - Nacivare

#### Context/Trigger of response

☑ Conflict

☐ Cyclone

☐ Floods

#### Setting

☑ Rural

☐ Urban

#### **Shelter category**

☐ Emergency Shelter

☐ Transitional Shelter ☐ Permanent Shelter

#### Type of site

☐ Temporary site

☑ Relocation site, Resettlement sites

☐ Host areas/affected areas

☐ Return/origin location

#### PROJECT DESCRIPTION

#### Methodology

Families will be mobilized to chip in wooden poles and bamboos and then the families will receive other additional materials for the construction: rope, wire, nails, sheets and beams.

A mixed construction committee (men and women) will be set up to make the wall structure and assemble the roof structure and the roof will be made with another group of specialized carpenters, and the construction will be carried out by a team of 5 people per shelter.

#### Community Engagement/ Participation

CARE trained and equipped a group of local volunteer carpenters, later the group would carry out roofing work on the shelters through a selection of the most outstanding in the group, as this was specialized work.

#### **Environmental Consideration**

Uses locally available resources for support, allowing the beneficiary to make upgrades and repairs as needed..

- Windows can be added to allow for optimum air circulation.
- -Wooden posts and bamboo need to be treated to combat termites.
- You can use the roof sheets to collect rainwater

# **Cultural Practices** (Sustainability)

It is possible to upgrade and improve, extension is also possible using a progressive approach. Especially when adapting the pantry/kitchen in the balcony part.

| Other Information |  |
|-------------------|--|
|                   |  |
|                   |  |

